
CS 61A Structure and Interpretation of Computer Programs
Summer 2022 Midterm Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

Exam generated for <EMAILADDRESS> 3

1. (7.0 points) What Would Python Display?

For each of the expressions below, write the output displayed by the interactive Python interpreter when the
expression is evaluated. The output may have multiple lines.

• If an error occurs, write Error, but include all output displayed before the error.
• If evaluation would run forever, write Forever.
• To display a function value, write Function.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None. Assume
that you have first started python3 and executed the below statements.

def f(x):
return not x

def my_pow(x, n):
print(x, n)
if f(n):

return 1
elif n < 0:

return 1 // my_pow(x, -n)
elif n % 2:

return x * my_pow(x, n - 1)
return my_pow(x * x, n // 2)

def hero(spider):
def man(home):

def marvel(home):
return None

print(spider)
print(marvel)
return spider - home

return man

goat = lambda m: lambda n: m - n
bleat = (lambda a, b, c, d: b or a(d)(c))(goat, 5 == 6, 7, 4)

(a) (2.0 pt) my_pow(2, -1)

2 -1
2 1
2 0
0

Exam generated for <EMAILADDRESS> 4

(b) (1.0 pt) hero(1, 2, 3)

Error

(c) (1.0 pt) hero(1)(2)(3)

1
Function
Error

(d) (2.0 pt) print(1, print(4, goat(5)(4 // 2)))

4 3
1 None

(e) (1.0 pt) bleat

-3

Exam generated for <EMAILADDRESS> 5

2. (6.0 points) Minions

Answer the following questions to fill in the blanks in the environment diagram, and answer what is printed
when the function is run. Line numbers are included for convenience.

1| minions = [1, "minion", None, [2], True]
2|
3| def banana(kevin, bob):
4| otto = []
5|
6| def rise(gru):
7| gru.extend([gru.append([gru[1]])])
8| print(gru[2])
9| return gru[-1]

10|
11| # STOP EXECUTION HERE FOR PART I
12|
13| while kevin.pop():
14| stuart = kevin.pop(0)
15| otto.append(bob(stuart))
16|
17| print(otto)
18| print(minions)
19|
20| print(rise(otto))
21|
22| banana(minions, lambda despicable: despicable * 2)

Exam generated for <EMAILADDRESS> 6

(a) (1.5 points) Part I

The following environment diagram shows the execution of the program until, but not including, the while
loop beginning on line 13.

i. (0.5 pt) Fill in blank (a)

banana(kevin, bob)

ii. (0.5 pt) Fill in blank (b)

[parent=Global]

iii. (0.5 pt) Fill in blank (c)

[parent=f1]

Exam generated for <EMAILADDRESS> 7

(b) (4.0 points) Part II

Answer the following questions assuming the remaining code has been executed.

i. (1.5 pt) What will be printed to the terminal as a result of executing print(otto) on line 17?

[2, 'minionminion']

ii. (1.0 pt) What will be printed to the terminal as a result of executing print(minions) on line 18?

[]

iii. (1.0 pt) What will be printed to the terminal as a result of executing print(gru[2]) on line 8?

['minionminion']

iv. (1.0 pt) What will be printed to the terminal as a result of executing print(rise(otto)) on line 20?

None

Exam generated for <EMAILADDRESS> 8

3. (3.0 points) Bite-Size HOFs

(a) (1.5 points) Inverse Checker

Implement inverse_checker, a function that takes in two functions f and g and returns a function that
returns True if g is the inverse function of f on input n. That is, g undoes the effect of f called on n.

def inverse_checker(f, g):
"""
>>> checker0 = inverse_checker(lambda x: x + 1, lambda x: x - 1)
>>> all([checker0(n) for n in range(100)])
True
>>> # `g` is the inverse `f`, but `f` is not the inverse of `g`
>>> checker1 = inverse_checker(lambda x: x * 2, lambda x: x // 2)
>>> all([checker1(n) for n in range(100)])
True
>>> checker2 = inverse_checker(lambda x: x ** 3, lambda x: x ** -3)
>>> all([checker2(n) for n in range(1, 100)])
False
"""
def checker(n):

return __________
(a)

return __________
(b)

i. (1.0 pt) Fill in blank (a)

return g(f(n)) == n

ii. (0.5 pt) Fill in blank (b)

checker

Exam generated for <EMAILADDRESS> 9

(b) (1.5 points) Force Truthy

Implement force_truthy, a function that takes in a function f and returns a function that returns the
same thing as f when given an argument n such that f(n) outputs a truthy value, and otherwise returns
True.

def force_truthy(f):
"""
>>> truthy = force_truthy(lambda x: x // 10)
>>> all([truthy(n) for n in range(10)])
True
>>> truthy(9)
True
>>> truthy(10)
1
>>> truthy(20)
2
"""
def truthy(n):

return __________
(a)

return __________
(b)

i. (1.0 pt) Fill in blank (a)

f(n) or True

ii. (0.5 pt) Fill in blank (b)

truthy

Exam generated for <EMAILADDRESS> 10

4. (6.0 points) Least Resistance

Fill in the definition of the function least_resistance, which takes in three parameters, m, n, and f. m and
n are integers which specify a coordinates position on a grid, and f is a two-argument function that takes in
coordinates and returns a number. Your goal is to find the path of “least resistance” from the position (m, n)
to the position (0, 0) on the grid, relative to f, which defines the resistance of each square, and return the
total resistance met along that path.

A path is a series of consecutive steps from a coordinate position on the grid to (0, 0), where at each step you
may either take one step down, or one step to the left. The total resistance of a path is defined as the sum of f
called on each coordinate position visited. For example, the below graphic visualizes the paths and of least
resistance, and total resistance met, for the first two doctests.

Note: In the skeleton, you are provided a line that uses float('inf'). This will return the Python equivalent
of infinity. That is, for any number n, float('inf') > n will be True, no matter the value of n.

Exam generated for <EMAILADDRESS> 11

def least_resistance(m, n, f):
"""
>>> f = lambda x, y: x ** 2 + y ** 2
>>> least_resistance(5, 5, f)
195
>>> g = lambda x, y: y
>>> least_resistance(5, 5, g)
15
"""
if __________:

(a)
return __________

(b)
elif __________:

(c)
return float('inf')

else:
r1 = least_resistance(______________________________)

(d)
r2 = least_resistance(______________________________)

(e)
return __________(r1, r2) + __________

(f) (g)

(a) (1.0 pt) Fill in blank (a)

m == 0 and n == 0

(b) (0.5 pt) Fill in blank (b)

f(0, 0) # or f(m, n)

(c) (1.0 pt) Fill in blank (c)

m < 0 or n < 0

(d) (1.0 pt) Fill in blank (d)

m - 1, n, f # can swap blanks (d) and (e)

(e) (1.0 pt) Fill in blank (e)

m, n - 1, f

Exam generated for <EMAILADDRESS> 12

(f) (0.5 pt) Fill in blank (f)

min

(g) (1.0 pt) Fill in blank (g)

f(m, n)

Exam generated for <EMAILADDRESS> 13

5. (7.0 points) Conditional Curry

Implement cond_curry, a function that takes in two functions, f and cond. f is a function that takes in two
arguments, and cond is a predicate function that will take in a single argument and return either True or False.
cond_curry returns a curried version of f that only “accepts” an argument x if calling cond(x) would return
True. Otherwise, x is not accepted as an argument. Once the curried function has accepted two arguments, it
will behave exactly as f would when called on those arguments.

def cond_curry(f, cond):
"""
>>> from operator import add
>>> curried = cond_curry(add, is_prime) # assume `is_prime` is implemented
>>> curried(11)(13) # 11 + 13 = 24
24
>>> curried(10)(11)(12)(13) # 10 and 12 are not prime, and so are ignored
24
>>> curried(7)(4)(4)(4)(4)(4)(4)(4)(4)(7)
14
"""
__________:

(a)
__________:

(b)
__________:

(c)
return __________

(d)
return __________

(e)
__________:

(f)
return __________

(g)
return __________

(h)
return __________

(i)

(a) (0.5 pt) Fill in blank (a)

if cond(f)

 def g(x)

(b) (1.0 pt) Fill in blank (b)

if cond(f)

 def h(y)

if cond(x)

if f(x, cond)

if f(cond, x)

Exam generated for <EMAILADDRESS> 14

(c) (0.75 pt) Fill in blank (c)

if cond(x)

 if cond(y)

if cond(f)

def i(z)

(d) (1.0 pt) Fill in blank (d)

 f(x, y)

f(x, z)

f(y, z)

h

i

(e) (0.75 pt) Fill in blank (e)

f(x, y)

g

 h

i

(f) (1.0 pt) Fill in blank (f)

 if cond(x)

if cond(f)

def h(y)

(g) (0.75 pt) Fill in blank (g)

f(x, y)

cond(x)

cond(y)

 h

g

(h) (0.75 pt) Fill in blank (h)

 g

h

f(x, cond)

cond(x)

Exam generated for <EMAILADDRESS> 15

(i) (0.5 pt) Fill in blank (i)

cond(f)

 g

Exam generated for <EMAILADDRESS> 16

6. (9.0 points) Blob Sum

(a) (2.0 points) Count Digits

Implement count_digits, a function that takes in a number n and returns the number of digits n contains.
You should treat the number 0 as having no digits.

def count_digits(n):
"""
>>> count_digits(0) # 0 has no digits
0
>>> count_digits(618)
3
>>> count_digits(2022)
4
"""
if __________:

(a)
return __________

(b)
return __________

(c)

i. (0.5 pt) Fill in blank (a)

n == 0

ii. (0.5 pt) Fill in blank (b)

0

iii. (1.0 pt) Fill in blank (c)

1 + count_digits(n // 10)

Exam generated for <EMAILADDRESS> 17

(b) (7.0 points) Blob Sum

Implement blob_sum, a function that takes in two positive integers, n and k, and returns True if there
exists a way to add together the digits of n to equal k, where every digit of n is used exactly once. However,
in blob_sum, multiple consecutive digits can be considered as a single multi-digit number (a blob), or as
multiple individual digits.

Digits are read left-to-right. For example, 123 can blob_sum to 15 (= 12 + 3) but not 33 (= 1 + 32).

You may assume count_digits is implemented correctly.

def blob_sum(n, k):
"""
>>> blob_sum(123, 15) # 12 + 3 = 15
True
>>> blob_sum(123, 6) # 1 + 2 + 3 = 6
True
>>> blob_sum(123, 33) # digits of `n` must be read left-to-right
False
>>> blob_sum(123, 24) # 1 + 23 = 24
True
>>> blob_sum(123, 12) # every digit of `n` must be used
False
>>> blob_sum(123, 35) # every digit of `n` can only be used once
False
"""
def helper(n, k, blob):

if __________:
(a)

return __________
(b)

if __________:
(c)

return False
rest, last = __________

(d)
new_blob = __________

(e)
return __________

(f)
return helper(______________________________)

(g)

i. (0.5 pt) Fill in blank (a)

n == 0

ii. (1.0 pt) Fill in blank (b)

k == blob

Exam generated for <EMAILADDRESS> 18

iii. (0.5 pt) Fill in blank (c)

k <= 0

iv. (0.5 pt) Fill in blank (d)

n // 10, n % 10

v. (2.0 pt) Fill in blank (e)

blob + (last * (10 ** count_digits(blob)))

vi. (2.0 pt) Fill in blank (f)

helper(rest, k - new_blob, 0) or helper(rest, k, new_blob)

vii. (0.5 pt) Fill in blank (g)

n, k, 0

Exam generated for <EMAILADDRESS> 19

7. (6.0 points) Even Out

Fill in the definition for the function even_out. even_out takes in two parameters: lst, which is a list containing
only the numbers 1 and 0 as elements, and d, which is a non-negative integer. even_out mutates lst such that
exactly d instances of 0 occur between each instance of 1. It also returns two values: the number of zeros it had
to add to accomplish this, and the number of zeros it had to remove. You may assume that the first and last
elements of lst will always be 1.

def even_out(lst, d):
"""
>>> lst = [1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1]
>>> a, r = even_out(lst, 2)
>>> lst
[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
>>> a
3
>>> r
3
>>> a, r = even_out(lst, 0)
>>> lst
[1, 1, 1, 1, 1]
>>> a
0
>>> r
8
"""
i = 0
count = d
added, removed = 0, 0
while i < len(lst):

if __________:
(a)

i += 1
count = 0

elif __________:
(b)

(c)

i += 1
count += 1
added += 1

elif __________:
(d)

(e)

removed += 1
else:

i += 1
count += 1

return added, removed

(a) (1.0 pt) Fill in blank (a)

lst[i] == 1 and count == d

Exam generated for <EMAILADDRESS> 20

(b) (1.0 pt) Fill in blank (b)

lst[i] == 1 and count < d

(c) (1.5 pt) Fill in blank (c)

lst.insert(i, 0)

(d) (1.0 pt) Fill in blank (d)

count == d

(e) (1.5 pt) Fill in blank (e)

lst.pop(i)

Exam generated for <EMAILADDRESS> 21

8. (20.0 points) Boba Cafe OOPerations

(a) (9.0 points) Part I: Makin’ Drinks

Tyler and Chris want to open a new restaurant, but they disagree on what style of restaurant would be
most successful in Berkeley. Tyler believes that a boba restaurant will attract more sales, while Chris
argues that a cafe will attract more customers. As a compromise, they’ve decided to open a combined
boba cafe that will sell a variety of different drinks and food.

Tyler and Chris have decided to represent their restaurant’s sales with different Food classes in order to
track their sales.

class Item:

all_items = {}

def __init__(self, name, cost, in_stock=True):
self.name = name
self.cost = cost
self.in_stock = in_stock

Complete the implementations for the class Boba and the class Coffee. Boba and Coffee are items in the
restaurant. Whenever a new item is created, that item’s name should be added to the class attribute
dictionary all_items with a value of 1 in the class Item. If the name is already in the dictionary, the
value should increase by 1. Boba should have a list all_boba that stores all the Boba items that have been
sold. Coffee should have a list all_coffee that stores all Coffee items that have been sold.

Boba should have an additional attribute called topping that keeps track of what topping that drink had,
if any.

Coffee should have an additional attribute called temp that defaults to ‘hot’ and a method called add_ice
that sets the temp to ‘cold’ when it is called.

Exam generated for <EMAILADDRESS> 22

class Boba(_____):
(a)

all_boba = ________
(b)

def __init__(self, name, cost, in_stock, topping):

(c)

__________ = _________
(d) (e)

(f)

if ___________ not in ___________________:
(g) (h)

_________________[_________] = 1
(i) (j)

else:
_________________[_________] += 1

(i) (j)

class Coffee(_____):
(a)

all_coffee = ________
(b)

def __init__(self, name, cost, in_stock):

(c)

_________ = 'hot'
(k)

(l)

if ___________ not in ___________________:
(g) (h)

_________________[_________] = 1
(i) (j)

else:
_________________[_________] += 1

(i) (j)

def add_ice(__________):
(m)

__________ = 'cold'
(n)

i. (0.5 pt) Fill in blank (a)

Item

Exam generated for <EMAILADDRESS> 23

ii. (0.5 pt) Fill in blanks labeled (b)

[]

iii. (1.5 pt) Fill in blanks labeled (c)

super().__init__(name, cost, in_stock)

iv. (0.5 pt) Fill in blank (d)

self.topping

v. (0.5 pt) Fill in blank (e)

topping

vi. (0.75 pt) Fill in blank (f)

Boba.all_boba.append(self)

vii. (0.5 pt) Fill in blanks labeled (g)

self.name

viii. (1.0 pt) Fill in blanks labeled (h)

super().all_items

ix. (0.5 pt) Fill in blanks labeled (i)

super().all_items

x. (0.5 pt) Fill in blanks labeled (j)

self.name

Exam generated for <EMAILADDRESS> 24

xi. (0.5 pt) Fill in blank (k)

self.temp

xii. (0.75 pt) Fill in blank (l)

Coffee.all_coffee.append(self)

xiii. (0.5 pt) Fill in blank (m)

self

xiv. (0.5 pt) Fill in blank (n)

self.temp

Exam generated for <EMAILADDRESS> 25

(b) (5.0 points) Part II: Who Wins?

Tyler is feeling a bit competitive still and wants to prove to Chris that the boba part of their restaurant
is the more successful part. Write a method called more_sold that returns whether more Boba or more
Coffee has been sold. Remember Item stores a dictionary with keys as names of drinks and values as the
number of that drink sold. If sales are equal, then make sure neither Tyler nor Chris think they are selling
more than the other.

def more_sold():
"""
>>> bubble_tea = Boba('Bubble Tea', 4, True, 'Tapioca pearls')
>>> black_coffee = Coffee('Black', 2, True)
>>> latte = Coffee('Latte', 4, True)
>>> Item.more_sold()
'Coffee'
"""
boba_names = [__________ for boba in ___________________]

(a) (b)
coffee_names = [__________ for coffee in ___________________]

(c) (d)
boba_total = [________________ for name in ________________________________]

(e) (f)
coffee_total = [________________ for name in ________________________________]

(e) (g)
if ____________________:

(h)
return 'Boba'

elif ____________________:
(i)

return 'Coffee'
else:

return 'Neither'

i. (0.5 pt) Fill in blank (a)

boba.name

ii. (0.5 pt) Fill in blank (b)

Boba.all_boba

iii. (0.5 pt) Fill in blank (c)

coffee.name

iv. (0.5 pt) Fill in blank (d)

Coffee.all_coffee

Exam generated for <EMAILADDRESS> 26

v. (0.5 pt) Fill in blanks labeled (e)

Item.all_items[name]

vi. (0.75 pt) Which of these could fill blanks labeled (f)? Check all that apply.

� Item.all_items.keys() if name in boba_names

2 Item.all_items.values() if name in boba_names

2 Item.all_items.items() if name in boba_names

2 Item.all_items if name

2 Item.all_items if boba_names

� Item.all_items if name in boba_names

2 Item.all_items[]

� boba_names

2 boba_names if name in coffee_names

2 name

vii. (0.75 pt) Which of these could fill blanks labeled (g)? Check all that apply.

� Item.all_items.keys() if name in coffee_names

2 Item.all_items.values() if name in coffee_names

2 Item.all_items.items() if name in coffee_names

2 Item.all_items if name

2 Item.all_items if coffee_names

� Item.all_items if name in coffee_names

2 Item.all_items[]

� coffee_names

2 coffee_names if name in boba_names

2 name

viii. (0.5 pt) Fill in blank (h)

sum(boba_total) > sum(coffee_total) # or len(Boba.all_boba) >
len(Coffee.all_coffee)

ix. (0.5 pt) Fill in blank (i)

sum(coffee_total) > sum(boba_total) # or len(Coffee.all_coffee) >
len(Boba.all_boba)

Exam generated for <EMAILADDRESS> 27

(c) (6.0 points) Part III: Optimize Cost

This question was removed.

Exam generated for <EMAILADDRESS> 28

9. (1.0 points) Extra Credit

Here are three questions about lecture. You must get all three correct to earn one point of extra credit.

(a) Songs from which artist were put into Richard’s playlist in his Sequences lecture (lecture 8)?

Olivia Rodrigo

(b) Which algorithm was demoed in Laryn’s Recursion lecture (lecture 6) as a method of verifying credit card
numbers?

Luhn Algorithm

(c) What did Cooper say was Richard’s favorite Taylor Swift album in the Objects lecture (lecture 10)?

Red (Taylor’s Version)

Exam generated for <EMAILADDRESS> 29

No more questions.

