
CS 61A Structure and Interpretation of Computer Programs
Summer 2022 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Would Python Display?

For each part of this question, you will be shown code that is executed in the Python interpreter, and you
should write what is printed to the interpreter after executing the last line.

• If a StopIteration exception occurs as a result of executing a line, you should write StopIteration

• If an iterator object is displayed as the result of executing a line, you should write Iterator, unless that
object is a generator. If a generator object is displayed as the result of executing a line, you should write
Generator

• If an error arises as a result of executing a line that is not a StopIteration, you should write Error

• If nothing is displayed as the result of executing a line, you should write Nothing

You should assume that each part is executed in order—that all the code from the previous parts have been
executed before the next part.

(a) (1.0 pt)

>>> a = [1, 2, 3, 5, 8, 13]
>>> i = iter(a)
>>> j = iter(a)
>>> next(i) + next(j)

(b) (2.0 pt)

>>> next(i) + next(i)

Exam generated for <EMAILADDRESS> 4

(c) (2.0 pt)

>>> def mystery(n):
... i = 1
... while i < n:
... if n % i == 0:
... yield i
... i += 1
...
>>> m = mystery(8)
>>> m

(d) (3.0 pt) >>> for x in range(10): ... print(next(m)) ...

Exam generated for <EMAILADDRESS> 5

2. (10.0 points) Lambdistinction

Fill in the blanks of the environment diagram corresponding to executing the following code block.

1| j = lambda j: not j
2| def g(i, p):
3| j = lambda i: p(i - 1)
4| def h(k):
5| return j(k(i + 2) - 1)
6| return h
7|
8| p = lambda p: not p
9| r = g(-4, p)(lambda r: r * -1)

Exam generated for <EMAILADDRESS> 6

(a) (1.0 pt) Fill in blank (a)

(b) (1.0 pt) Fill in blank (b)

(c) (2.0 pt) Fill in blank (c)

(d) (1.0 pt) Fill in blank (d)

(e) (2.0 pt) Fill in blank (e)

(f) (2.0 pt) Fill in blank (f)

(g) (1.0 pt) Fill in blank (g)

Exam generated for <EMAILADDRESS> 7

3. (15.0 points) Pruning and Sprouting

(a) (8.0 points) Prune Below

Fill in the definition of the function prune_below, which takes in one argument t, that is a Tree.
prune_below also takes in a second optional parameter, seen_before, which is a list containing all of the
values the function has seen in t’s parent.

prune_below mutates t by removing all subtrees whose labels are equal to t.label, and then mutates all
remaining subtrees of t by the same process.

def prune_below(t, seen_before=[]):
"""
>>> t = Tree(5, [Tree(4, [Tree(3), Tree(4), Tree(5)]), Tree(5, [Tree(6), Tree(7)])])
>>> print(t)
5
4
3
4
5

5
6
7

>>> prune_below(t)
>>> print(t)
5
4
3

"""
seen_before = __________

(a)
new_branches = [b for b in t.branches if __________]

(b)

(c)
for b in t.branches:

(d)

i. (2.0 pt) Fill in blank (a)

seen_before.append(t.label)

seen_before[1:]

seen_before + [t.label]

[t.label]

Tree(t.label)

list(seen_before)

seen_before + t.label

seen_before + [b.label for b in t.branches]

seen_before.extend([b.label for b in t.branches])

seen_before += [t.label]

Exam generated for <EMAILADDRESS> 8

ii. (3.0 pt) Fill in blank (b)

iii. (2.0 pt) Fill in blank (c)

t.branches.extend(new_branches)

t.branches = [b.label for b in t.branches]

return Tree(t.label, new_branches)

t.branches.remove(new_branches)

prune_below(t, new_branches)

t = Tree(t.label, new_branches)

new_branches.remove(t.label)

t.branches = new_branches

iv. (1.0 pt) Fill in blank (d)

Exam generated for <EMAILADDRESS> 9

(b) (7.0 points) Sprout Tree

In this problem, we’ll write a function that “sprouts” new trees from a given root, which can be any integer.
We’ll also use a function sprouter, that takes in a single integer as an argument and returns a list. To
sprout a new tree, we need to construct an instance of the Tree class whose label is root. We then call
sprouter on root to get a list of numbers that will serve as the labels of our tree’s branches.

Depending on how deep we want our tree to be, we can repeat the process on the labels of each of our
new branches, using the same sprouter function.

For example, the below diagram illustrates how to sprout a tree with a root of 3 and a sprouter function
of lambda x: [x - 1, x + 1].

Fill in the definition of sprout_tree below, which takes in three parameters: root, sprouter, and d, and
returns a new tree of depth d that is sprouted from root by applying the sprouter function. You can
assume that d will always be >= 0.

Exam generated for <EMAILADDRESS> 10

def sprout_tree(root, sprouter, d):
"""
>>> minus_plus_one = lambda x: [x - 1, x + 1]
>>> print(sprout_tree(3, minus_plus_one, 0))
3
>>> print(sprout_tree(3, minus_plus_one, 1))
3
2
4

>>> print(sprout_tree(3, minus_plus_one, 2))
3
2
1
3

4
3
5

"""
if __________:

(a)
return __________

(b)
new_branches = [__________ for i in __________]

(c) (d)
return __________

(e)

i. (1.0 pt) Fill in blank (a)

ii. (1.0 pt) Fill in blank (b)

iii. (2.0 pt) Fill in blank (c)

iv. (2.0 pt) Fill in blank (d)

v. (1.0 pt) Fill in blank (e)

Exam generated for <EMAILADDRESS> 11

4. (15.0 points) Linked List Comprehension

In Python, we can use list comprehensions to quickly generate lists from other lists—list comprehensions include
an expression that is applied to each element in the list, and can optionally include an if clause.

>>> a = [1, 2, 3, 4, 5]
>>> [i ** 2 for i in a if i % 2 == 0]
[4, 16]

We often refer to the expression as a “mapping expression”, and the if clause as a “filter clause”. i ** 2 is the
mapping expression in the above example, and i % 2 == 0 is the filter clause.

In this problem, we will write a function that works similarly for linked lists:

>>> b = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> link_comp(b, lambda x: x ** 2, lambda x: x % 2 == 0)
Link(4, Link(16))

You will implement this function both recursively and iteratively.

(a) (7.0 points) Recursive Version

Fill in the definition of the below function link_comp_recur to execute a “list comprehension” over a
linked list lnk, using the functions map_func and filter_func.

map_func is a function that takes in one argument and returns one value, and filter_func is a one-
argument function that will always return a boolean value.

link_comp_recur should return a new linked list that is identical to lnk, but only keeping each Link for
whom calling filter_func on the first of that Link returns True. Additionally, the first of each Link
in your new list should be equal to the first of the corresponding Link in lnk with map_func applied.

Note: filter_func is always applied before map_func—we check whether a link should be filtered before
applying our mapping function to it.

def link_comp_recur(lnk, map_func, filter_func):
"""
>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> print(lnk)
<1 2 3 4 5>
>>> add_one = lambda x: x + 1
>>> is_even = lambda x: x % 2 == 0
print(link_comp_recur(lnk, add_one, is_even))
<3 5>
>>> square = lambda x: x ** 2
>>> greater_than_2 = lambda x: x > 2
print(link_comp_recur(lnk, square, greater_than_2))
<9 16 25>
"""
if __________:

(a)
return Link.empty

new_rest = __________
(b)

if __________:
(c)

return __________
(d)

else:
return new_rest

Exam generated for <EMAILADDRESS> 12

i. (1.0 pt) Fill in blank (a)

ii. (2.0 pt) Fill in blank (b)

iii. (2.0 pt) Fill in blank (c)

iv. (2.0 pt) Fill in blank (d)

Exam generated for <EMAILADDRESS> 13

(b) (7.0 points) Iterative Version

Next, fill in the behavior of link_comp_iter. link_comp_iter should behave exactly the same as
link_comp_recur, but internally it is implemented using iteration rather than recursion. For simplicity,
you can assume that lnk will never be equal to Link.empty, and that we will never filter out every value
of the list.

def link_comp_iter(lnk, map_func, filter_func):
"""
>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> print(lnk)
<1 2 3 4 5>
>>> add_one = lambda x: x + 1
>>> is_even = lambda x: x % 2 == 0
print(link_comp_iter(lnk, add_one, is_even))
<3 5>
>>> square = lambda x: x ** 2
>>> greater_than_2 = lambda x: x > 2
print(link_comp_iter(lnk, square, greater_than_2))
<9 16 25>
"""
while __________:

(a)
lnk = lnk.rest

front = Link(map_func(lnk.first))
end = front
lnk = lnk.rest
while lnk is not Link.empty:

if __________:
(b)

end.rest = __________
(c)

(d)

(e)

return front

i. (1.0 pt) Fill in blank (a)

ii. (2.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 14

iv. (2.0 pt) Fill in blank (d)

lnk = lnk.rest

lnk.first = map_func(lnk.first)

end = end.rest

end, lnk = end.rest, lnk.rest

end.first = map_func(end.first)

end, lnk = lnk, end

v. (1.0 pt) Fill in blank (e)

Exam generated for <EMAILADDRESS> 15

(c) (1.0 points) Efficiency

i. (1.0 pt) Which of the following describes the efficiency of link_comp_recur and link_comp_iter,
relative to the length of the linked list lnk? Efficiency is the same for both functions.

Constant

Logarithmic

Linear

Quadratic

Exponential

Exam generated for <EMAILADDRESS> 16

5. (15.0 points) Tails is my Pal!

(a) (3.0 points) Reverse car

Implement rev-car, a procedure that takes in a Scheme list and returns the last value in the list. You
may assume the input list is not empty.

scm> (rev-car '(1 2 3))
3
scm> (rev-car '(1))
1

(define (rev-car lst)
(if (__________)

(a)

(b)

(c)
)

)

i. (1.0 pt) Fill in blank (a)

ii. (1.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 17

(b) (3.0 points) Reverse cdr

Implement rev-cdr, a procedure that takes in a Scheme list and returns a new list with all but the last
element. You may assume the input list is not empty.

scm> (rev-cdr '(1 2 3))
(1 2)
scm> (rev-cdr '(1))
()

(define (rev-cdr lst)
(if __________

(a)

(b)

(c)
)

)

i. (1.0 pt) Fill in blank (a)

ii. (1.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 18

(c) (5.0 points) Reverse cdr Tail

Now, implement rev-cdr tail recursively. reverse is a one-argument procedure that takes in a Scheme list
and reverses it. You may assume reverse is implemented tail recursively and correctly for you. However,
your implementation may not call reverse besides the one place where it is already written for you.

scm> (reverse '(1 2 3))
(3 2 1)
scm> (rev-cdr '(1 2 3))
(1 2)
scm> (rev-cdr '(1))
()

(define (rev-cdr lst)
(define (helper lst sofar)
(if __________

(a)

(b)
(helper __________ __________)

(c) (d)
)

)
(reverse __________)

(e)
)

i. (1.0 pt) Fill in blank (a)

ii. (1.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

iv. (1.0 pt) Fill in blank (d)

v. (1.0 pt) Fill in blank (e)

Exam generated for <EMAILADDRESS> 19

(d) (4.0 points) Is Palindrome?

Implement is-pal, a procedure that takes in a Scheme list of numbers and returns #t if the list is a
palindrome. That is, the input list reads the same forward and backward. Otherwise, it should return
#f. Your implementation should work for lists of odd and even length. Your implementation must use
rev-car and rev-cdr.

scm> (is-pal '(1 2 3 3 2 1))
#t
scm> (is-pal '(1 2 3 2 1))
#t
scm> (is-pal '(1 2 3))
#f
scm> (is-pal '(1))
#t
scm> (is-pal '())
#t

(define (is-pal lst)
(cond
(__________ #t)

(a)
(__________ #t)

(b)
((= __________) __________)

(c) (d)
(else #f)

)
)

i. (1.0 pt) Fill in blank (a)

ii. (1.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

iv. (1.0 pt) Fill in blank (d)

Exam generated for <EMAILADDRESS> 20

6. (11.0 points) Sche(min) some Data Abstract(ions)

(a) (3.0 points) Minion Dominion

Let’s make a Scheme data abstraction to represent everybody’s favorite fictional yellow creatures! A minion
is described by its name, energy level, and the names of the missions it has completed.

• The name of a minion can be any symbol.
• The energy level of a minion is an integer.
• A minion’s completed missions are represented as a list of mission names.

A mission is also represented by a data abstraction. Each mission has a mission name and energy cost.
The mission data abstraction implementation is omitted, but you may use the get-mission-name and
get-mission-energy procedures.

• The name of a mission can be any symbol.
• The energy cost of a mission is an integer.

Here is how a minion data abstraction can be constructed and used:

scm> (define stuart (make-minion 'Stuart 1 nil))
stuart
scm> (get-name stuart)
Stuart
scm> (get-energy stuart)
1
scm> (get-missions stuart)
()

make-minion is implemented for you. Complete the get-name, get-energy, and get-missions procedures.

(define (make-minion name energy missions)
(list name energy missions)

)

(define (get-name minion)

(a)
)

(define (get-energy minion)

(b)
)

(define (get-missions minion)

(c)
)

i. (1.0 pt) Fill in blank (a)

Exam generated for <EMAILADDRESS> 21

ii. (1.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 22

(b) (6.0 points) You mission or mishout?

Minions are good for one thing: completing missions. Implement complete-mission, which takes in a
minion abstraction and mission abstraction and returns a new minion abstraction. If the minion’s
energy level is at least as much as the mission’s energy cost, that mission’s name should be added to
the end of the minion’s list of completed missions, and the minion’s energy level should be reduced by
the energy cost of the completed mission. If the minion does not have enough energy to complete the
mission, nothing about the minion should change.

In both cases, you should be returning a minion abstraction.

Do not break the abstraction barrier.

scm> (define kevin (make-minion 'Kevin 9 nil))
kevin
scm> (define mission-1 (make-mission 'Mission1 7))
mission1
scm> (define mission-2 (make-mission 'Mission2 5))
mission2
scm> (define mission-3 (make-mission 'Mission3 1))
mission3
scm> (define kevin (complete-mission kevin mission-1))
kevin
scm> (define kevin (complete-mission kevin mission-2))
kevin
scm> (define kevin (complete-mission kevin mission-3))
kevin
scm> (get-energy kevin)
1
scm> (get-missions kevin)
(Mission1 Mission3)

The procedure signatures for the mission abstraction are shown below:

(define (make-mission name energy-cost)
; IMPLEMENTATION OMITTED

)

(define (get-energy-cost mission)
; IMPLEMENTATION OMITTED

)

(define (get-mission-name mission)
; IMPLEMENTATION OMITTED

)

(define (complete-mission minion mission)
(if (>= __________)

(a)

(b)

(c)
)

)

Exam generated for <EMAILADDRESS> 23

i. (1.0 pt) Fill in blank (a)

ii. (4.0 pt) Fill in blank (b)

iii. (1.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 24

(c) (2.0 points) M&Ms need R&R

Minions need to take a break and replenish their energy after a long day of completing missions. Implement
the take-break procedure which takes in a list of minion abstractions and an integer n and returns
new list of new minion abstractions where each minion has n more energy. The names and completed
mission lists of each minion should be unaffected.

Do not break the abstraction barrier.

scm> (define bob (make-minion 'Bob 2 nil))
bob
scm> (define mission-A (make-mission 'MissionA 1))
mission-A
scm> (define bob (complete-mission bob mission-A))
bob
scm> (define otto (make-minion 'Otto 0 nil))
otto
scm> (define mission-B (make-mission 'MissionB 2))
mission-B
scm> (define otto (complete-mission otto mission-B))
otto
scm> (define minions (list bob otto))
minions
scm> (define new-minions (take-break minions 12))
new-minions
scm> (define bob (car new-minions))
bob
scm> (define otto (car (cdr (new-minions))))
otto
scm> (get-energy bob)
13
scm> (get-energy otto)
12
scm> (get-missions bob)
(MissionA)
scm> (get-missions otto)
()

(define (take-break minions n)
(map

(a)
minions

)
)

i. (2.0 pt) Fill in blank (a)

Exam generated for <EMAILADDRESS> 25

7. (6.0 points) Regular Expressongs

(a) Richard Roggenrigo

Richard is obsessed with Olivia Rodrigo’s song “good 4 u” and wants to be able to match all the valid
spellings of the title. He wants to write a function in Python that will return whether the title is contained
within the lyrics passed in. The only variations he has seen include:

• “good 4 u”
• “Good 4 u”
• “good for you”
• “Good for you”

Here is the function Richard wants to use:

def good_4_u(lyrics):
"""
>>> good_4_u("good 4 u")
True
>>> good_4_u("Good 4 u")
True
>>> good_4_u("good for you")
True
>>> good_4_u("Good for you")
True
>>> good_4_u("We think that's good for you!") # can contain more than the song title
True
>>> good_4_u("Good for your") # can't be similar words or have extra characters
False
>>> good_4_u("cGood for you")
False
>>> good_4_u("food for you")
False
>>> good_4_u("godd for you")
False
>>> good_4_u("Good four you")
False
>>> good_4_u("good 4 you") # can't combine 4 and you
False
>>> good_4_u("good for u") # can't combine for and u
False
"""
return bool(re.search(r'____________________________', lyrics))

(a)

Exam generated for <EMAILADDRESS> 26

i. (3.0 pt) Fill in blank a such that all the doctests behave as expected. Check all that apply.

2 \b(good|Good) (4 u|for you)\b

2 ˆ(good|Good) (4 u|for you)$

2 \b(g|G)ood (4 u|for you)\b

2 (\bg|G)ood(4 u| for you\b)

2 \b(g|G)ood(4 u| for you)\b

2 [ˆg|G]ood(4 u| for you)\b

2 \b[Ggodfr4yu\s]{8, 12}\b

2 \b[Ggod]{4} [4for]{3} [you]{3}\b

2 .*[Ggod]{4} [4for]{1,3} [you]{1,3}.*

2 \b[Ggod]{4} (4 u|for you)\b

Exam generated for <EMAILADDRESS> 27

(b) Cooper Belongs with Me

Cooper, on the other hand, is obsessed with Taylor Swift’s song “You Belong With Me” and wants to be
able to match all the valid spellings of this song’s title. They have written a function in Python that will
return whether the lyrics passed in are exactly a valid title.

def you_belong_with_me(lyrics):
return bool(re.search(r'^([Yy]ou) [Bb]elong\s((W|w)ith|w\/) (M|m)e(e{3})*$', lyrics))

i. (3.0 pt) Select all possible inputs for lyrics where you_belong_with_me would return True.

2 "You Belong With Me"

2 "You belong With me"

2 "You Belong With Mee"

2 "You Belong With Meee"

2 "You Belong With Meeeeeee"

2 "you belong with me"

2 "you belong with me!"

2 "Oh You belong with me"

2 "You Belong w/ Me"

2 "You belong with me (Taylor's Version)"

Exam generated for <EMAILADDRESS> 28

8. (13.0 points) SQL: The Sequel

(a) (3.0 pt) Write a query that finds all the Disney or Illumination movies. The output table should have 1
column with the movie names.

You must reference the studios tables (pictured below) in your query.

Your solution should work on any table with the same columns.

Exam generated for <EMAILADDRESS> 29

(b) (4.0 pt) The below table is named movies. All values are in millions.

Write a query that finds the movie with the highest earnings ratio, the ratio between how much the movie
makes in the box office compared to the budget. For example, a movie that has a budget of 50 and has a
box office of 400 should have a ratio of 8.

The output table should have 1 column for the movies.

Your output should be a table with one row with the value “Home Alone 2”. You must reference the movies
table in your query. SELECT "Home Alone 2"; is not a valid solution. Your solution should work on any
table with title, budget, and boxoffice as the columns.

You are not allowed to use aggregate functions on this problem.

(c) (6.0 points)

Using the movies and studios tables from the last 2 problems, write a query that find the top 2 studios
with regards to average box office.

The table should be sorted from highest average to lowest. You should only include studios that have 2 or
more movies made. The output table should have 2 columns, one for the studio and one for the average
box office.

Your solution should work on any tables with the same columns.

Exam generated for <EMAILADDRESS> 30

i. (1.0 pt) Fill in Blank (a)

ii. (1.0 pt) Fill in Blank (b)

iii. (1.0 pt) Fill in Blank (c)

iv. (1.0 pt) Fill in Blank (d)

v. (1.0 pt) Fill in Blank (e)

vi. (1.0 pt) Fill in Blank (f)

Exam generated for <EMAILADDRESS> 31

9. (3.0 points) Special Topics

(a) (1.0 pt) Theory Query

What does NP stand for?

Non-computable Problem

Non-deterministic Polynomial

Not Polynomial

Non-decidable Problem

(b) (1.0 pt) Hear-y Queery

What is the process of numerically measuring the properties of speech sounds called?

Segmentation

Phonological Areality

Sociolinguistics

Acoustic Analysis

(c) (1.0 pt) Avengers, Ensemble!

A ________ model aggregates the results from a lot of randomized ________ models.

Pandas, Linear Regression

Random Lines, Linear Regression

Random Forest, Decision Trees

Random Forest, Machine Learning

Exam generated for <EMAILADDRESS> 32

No more questions.

