
CS 61A Structure and Interpretation of Computer Programs
Spring 2021 Practice Midterm 1 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

Exam generated for <EMAILADDRESS> 3

1. (14.0 points) Down for the Count

Definition. A digit is a non-negative integer less than 10. Integers contain digits.

Examples.

• The integer 21 contains the digits 1 and 2.
• The integer 474 contains the digit 4 twice and the digit 7 once.
• The integer 400 contains the digit 4 once and the digit 0 twice.
• The integer -77 contains the digit 7 twice.
• The integer 0 is a 0-digit number that contains no digits.

Reminders.

• You may call built-in functions that do not require import, such as min, max, abs, and pow.
• You may call functions defined in earlier parts of the question in your implementation for later parts, and
you may assume that the functions you call are implemented correctly.

RESTRICTION. You may not call str or repr or use [or] in any part of this question.

(a) (4.0 points)

Implement count, which takes a digit element and an integer box. It returns the number of times that
element appears in box.

Warning: n % d and n // d may not behave as you expect for negative n. For example, -123 % 10
evaluates to 7. -1 // 10 evaluates to -1. You do not need to know how these operators apply to negative
n in order to solve this problem.

def count(element, box):
"""Count how many times digit element appears in integer box.

Case 1
>>> count(2, 222122)
5

Case 2
>>> count(0, -2020)
2

Case 3
>>> count(0, 0) # 0 has no digits
0
"""
assert element >= 0 and element < 10

(a)

total = 0

while box > 0:

if _________:
(b)

total = _________
(c)

box = box // 10

Exam generated for <EMAILADDRESS> 4

return total

i. (2.0 pt) Fill in blank (a).

box = abs(box)

ii. (1.0 pt) Which of these could fill in blank (b)?

box == element

 box % 10 == element

box % element == 0

box % element > 0

iii. (1.0 pt) Which of these could fill in blank (c)?

 total + 1

element

total + element

box % 10

total + box % 10

Exam generated for <EMAILADDRESS> 5

(b) (5.0 points)

Implement count_nine, which takes a digit element and a non-negative integer box. It returns the number
of times that element appears in box and is not adjacent to a 9.

def count_nine(element, box):
"""Count how many times digit element appears in the non-negative integer
box in a place that is not next to a 9.

Case 1
>>> count_nine(2, 222122)
5

Case 2
>>> count_nine(1, 1911191) # Only the middle 1 is not next to a 9
1

Case 3
>>> count_nine(9, 9)
1

Case 4
>>> count_nine(9, 99)
0

Case 5
>>> count_nine(3, 314159265359)
2

Case 6
>>> count_nine(5, 314159265359)
1

Case 7
>>> count_nine(9, 314159265359)
2

Case 8
>>> count_nine(0, 0) # No digits are in 0
0
"""
assert element >= 0 and element < 10
assert box >= 0

nine, total = False, 0

while box > 0:

if _________ and not (nine or _________):
(a) (b)

total = _________
(c)

nine = _________ == 9
(d)

Exam generated for <EMAILADDRESS> 6

box = box // 10

return total

i. (1.0 pt) Which of these could fill in blank (a)?

box == element

 box % 10 == element

box % element == 0

box % element > 0

ii. (2.0 pt) Fill in blank (b).

(box // 10) % 10==9

iii. (1.0 pt) Which of these could fill in blank (c)?

 total + 1

element

total + element

box % 10

total + box % 10

iv. (1.0 pt) Fill in blank (d).

box % 10

Exam generated for <EMAILADDRESS> 7

(c) (5.0 points)

Implement fit, which takes two non-negative integers pegs and holes. It returns whether every digit in
pegs appears at least as many times in holes as it does in pegs.

def fit(pegs, holes):
"""Return whether every digit in pegs appears at least as many times in
holes as it does in pegs.

Case 1
>>> fit(123, 321) # Each digit appears once in pegs and in holes.
True

Case 2
>>> fit(1213, 33221) # 1 appears twice in pegs, but only once in holes.
False

Case 3
>>> fit(12, 22) # 1 appears once in pegs, but not at all in holes.
False

Case 4
>>> fit(314159, 112233456789)
True
"""
i = 0

while i <= _________:
(a)

if _________:
(b)

(c)

i = i + 1

return _________
(d)

i. (1.0 pt) Fill in blank (a).

9

ii. (2.0 pt) Fill in blank (b).

count(i, pegs) > count(i, holes)

Exam generated for <EMAILADDRESS> 8

iii. (1.0 pt) Fill in blank (c).

return False

iv. (1.0 pt) Which of these could fill in blank (d)?

 True

False

holes > pegs

pegs > holes

holes >= pegs

pegs >= holes

Exam generated for <EMAILADDRESS> 9

2. (8.0 points) Significant Factors

(a) (3.0 points)

Implement significant, which takes positive integers n and k. It returns the k most significant digits of
n as an integer. These are the first k digits of n, starting from the left. If n has fewer than k digits, it
returns n. You may not use round, int, str, or any functions from the math module.

You may use pow, which raises its first argument to the power of its second: pow(9, 2) is 81 and pow(9,
0.5) is 3.0.

def significant(n, k):
"""Return the K most significant digits of N.

Case 1
>>> significant(12345, 3)
123

Case 2
>>> significant(12345, 7)
12345
"""

if ____________________________:
(a)

return n

return significant(______________, ______________)
(b) (c)

i. (1.0 pt) Fill in blank (a).

n < pow(10, k)

ii. (1.0 pt) Which of these could fill in blank (b)?

k - 1

k / 10

k // 10

k % 10

n - 1

n / 10

 n // 10

n % 10

iii. (1.0 pt) Fill in blank (c).

k

Exam generated for <EMAILADDRESS> 10

(b) (5.0 points)

Implement factorize, which takes two integers n and k, both larger than 1. It returns the number of
ways that n can be expressed as a product of non-decreasing integers greater than or equal to k.

def factorize(n, k=2):
"""Return the number of ways to factorize positive integer n.

Case 1
>>> factorize(7) # 7
1

Case 2
>>> factorize(12) # 2*2*3, 2*6, 3*4, 12
4

Case 3
>>> factorize(36) # 2*2*3*3, 2*2*9, 2*3*6, 2*18, 3*3*4, 3*12, 4*9, 6*6, 36
9
"""

if n == k:

return 1

elif __________:
(a)

return 0

elif __________:
(b)

return factorize(n, k + 1)

return __________
(c)

i. (1.0 pt) Fill in blank (a).

k > n

ii. (2.0 pt) Which of these could fill in blank (b)?

n == k

n > k

n < k

n % k == 0

 n % k > 0

n % k < 0

Exam generated for <EMAILADDRESS> 11

iii. (2.0 pt) Fill in blank (c).

factorize(n//k, k) + factorize(n, k + 1)

Exam generated for <EMAILADDRESS> 12

3. (8.0 points) Please Register to Vote

Fill in each blank in the code example below so that its environment diagram is the following.

RESTRICTIONS. You must use all of the blanks. Each blank can only include one statement or expression.

Click here to open the diagram in a new window

def vote(vote):

please = _________
(a)

_________ = ty + 3
(b)

return please

ty = 1

register = _________(lambda nov: nov + ty)
(c)

https://i.imgur.com/18e4KqR.png

Exam generated for <EMAILADDRESS> 13

(d)

register(_________)
(e)

(a) (2.0 pt) Which of these could fill in blank (a)?

vote(ty)

vote(30)

vote

 lambda nov: vote(nov) + third

lambda nov: vote(nov + third)

lambda nov: vote(nov) + ty

lambda nov: vote(nov + ty)

(b) (1.0 pt) Which of these could fill in blank (b)?

 third

ty

please

vote

(c) (1.0 pt) Which of these could fill in blank (c)?

third

ty

please

 vote

(d) (2.0 pt) Fill in blank (d).

ty = 3

(e) (2.0 pt) Which of these could fill blank (e)? Check all that apply.

� ty * 10

2 ty - 1 + 30

� 30

2 third + 26

2 (lambda x: x + x)(15)

Exam generated for <EMAILADDRESS> 14

4. (10.0 points) Amazing Job Growth

Definition. A repeatable function is a function that returns a repeatable function.

Reminder. You may call built-in functions that do not require import, such as min, max, abs, and pow.

(a) (4.0 points)

Implement growth, which takes a number baseline and returns a repeatable function increase. When
increase is called on a number observed, it prints the difference between observed and the smallest
argument passed to growth or increase so far among the repeated calls.

def growth(baseline):
"""Return a function that can be called repeatedly on numbers and prints
the difference between its argument and the smallest argument used so far
(including baseline).

Case 1
>>> job = growth(148)(149)(150)(130)(133)(139)(137)
1
2
0
3
9
7
"""
def increase(observed):

under = _________
(a)

print(observed - under)

return _________
(b)

return increase

i. (2.0 pt) Fill in blank (a).

min(observed, baseline)

Exam generated for <EMAILADDRESS> 15

ii. (2.0 pt) Which of these could fill in blank (b)?

increase

increase(under)

increase(observed)

increase(baseline)

growth

 growth(under)

growth(observed)

growth(baseline)

Exam generated for <EMAILADDRESS> 16

(b) (6.0 points)

Implement maxer, a higher-order function that takes a function smoke, which takes a number and returns
a number. The maxer function returns a repeatable function fire that takes a number y and prints the
largest result of calling smoke on any value of y passed to fire so far among the repeated calls.

Assume that smoke is a deterministic pure function.

def square(x):
return x * x

def maxer(smoke):
"""Return a repeatable function fire(y) that prints the largest smoke(y) so far.

Setup
>>> g = maxer(square)

Case 1
>>> h = g(2)(1)(3)(2)(-4) # print the largest square(y) so far
4
4
9
9
16

Case 2
>>> h = maxer(abs)(2)(1)(3)(2)(-4) # print the largest abs(y) so far
2
2
3
3
4
"""

def fire(y):

(a)

def haze(z):

if _________:
(b)

z = y

return _________
(c)

return haze

return fire

Exam generated for <EMAILADDRESS> 17

i. (2.0 pt) Fill in blank (a). You may not write a return statement for this blank.

print(smoke(y))

ii. (2.0 pt) Fill in blank (b).

smoke(y) > smoke(z)

iii. (2.0 pt) Which of these could fill in blank (c)?

y

smoke(y)

fire(y)

fire(smoke(y))

haze

haze(y)

haze(smoke(y))

z

smoke(z)

 fire(z)

fire(smoke(z))

haze(z)

haze(smoke(z))

Exam generated for <EMAILADDRESS> 18

No more questions.

