
CS 61A Structure and Interpretation of Computer Programs
Fall 2020 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) The Droids You’re Looking For

Fill in each blank in the code example below so that executing it would generate the following environment
diagram on tutor.cs61a.org.

RESTRICTIONS. You must use all of the blanks. Each blank can only include one statement or expression.

Click here to open the diagram in a new window/tab

def x(wing):

poe = lambda poe: _________

https://tutor.cs61a.org
https://i.imgur.com/mns7bkp.png

Exam generated for <EMAILADDRESS> 4

(a)

wing.append(_________)
(b)

return _________
(c)

droid = [8]

b = x([1])

(d)

(a) (1.0 pt) Which of these could fill in blank (a)? Check all that apply.

2 wing + poe

2 wing.extend(poe)

2 wing.append(poe)

2 list(wing).extend(poe)

2 list(wing).append(poe)

(b) (1.0 pt) Fill in blank (b).

(c) (1.0 pt) Which of these could fill in blank (c)?

poe

poe(droid)

poe(wing)

poe(b)

(d) (3.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 5

2. (16.0 points) Stoned

Definition: A hailstone sequence begins with a positive integer n. If n is even, divide it by 2. If n is odd, triple
it and add 1. Repeat until 1 is reached. For example, the hailstone sequence starting at 10 is 10, 5, 16, 8, 4, 2, 1.

Assume that all hailstone sequences are finite.

(a) (9.0 points)

Implement hailstone, which takes a positive integer n and a one-argument function g. It calls g on each
element of the hailstone sequence starting at n and returns the length of the sequence.

def hailstone(n, g):
"""Call g on each element of the hailstone sequence starting
at n and return its length.

>>> a = hailstone(10, print)
10
5
16
8
4
2
1
>>> a
7
>>> s = []
>>> hailstone(10, s.append)
7
>>> s
[10, 5, 16, 8, 4, 2, 1]
"""
if n == 1:

h = _________
(a)

elif _________:
(b)

h = up

else:

h = down

(c)

return _________(n, _________)
(d) (e)

def up(n, f):

return 1 + f(3 * n + 1)

def down(n, f):

Exam generated for <EMAILADDRESS> 6

return 1 + f(n // 2)

i. (2.0 pt) Fill in blank (a)?

ii. (2.0 pt) Fill in blank (b)?

iii. (2.0 pt) Fill in blank (c)?

iv. (1.0 pt) Which of these could fill in blank (d)?

f

g

h

hailstone

up

down

v. (2.0 pt) Fill in blank (e)?

Exam generated for <EMAILADDRESS> 7

(b) (7.0 points)

Implement collide, which takes positive integers m and n. It returns the earliest element of the hailstone
sequence starting at n that also appears in the hailstone sequence starting at m. Assume hailstone is
implemented correctly.

def collide(m, n):
"""Return the earliest number in the hailstone sequence starting at n that
also appears in the hailstone sequence starting at m.

>>> collide(10, 32) # 10, 5, 16, 8, ... vs 32, 16, 8, ...
16
>>> collide(13, 11) # 13, 40, ... vs 11, 34, 17, 52, 26, 13, 40, ...
13
"""

s = []

hailstone(m, _________)
(a)

found = None

def f(k):

(b)

if _________:
(c)

(d)

hailstone(n, f)

return _________
(e)

i. (2.0 pt) Fill in blank (a)?

ii. (1.0 pt) Fill in blank (b)?

iii. (2.0 pt) Fill in blank (c)?

Exam generated for <EMAILADDRESS> 8

iv. (1.0 pt) Which of the these could fill in blank (d)?

found = k

found = min(k, n)

return k

return min(k, n)

found.append(k)

found.append(min(k, n))

v. (1.0 pt) Which of the these could fill in blank (e)?

found

found[0]

found[-1]

f(m)

f(n)

s

s[0]

s[-1]

Exam generated for <EMAILADDRESS> 9

3. (21.0 points) College Party

In a US presidential election, each state has a number of electors.

Definition: For some collection of states s, a win by at least k is a (possibly empty) subset w of s such that
the total number of electors for the states in w is at least k more than the total number of electors for the states
not in w but in s.

For example, in the battleground states below, Arizona (AZ), Pennsylvania (PA), and Michigan (MI) have a
total of 11 + 20 + 16 = 47 electors. The remaining states have a total of 6 + 16 + 10 = 32 electors. So, the
subset <AZ PA MI> is a win by 47 - 32 = 15.

class State:
electors = {}
def __init__(self, code, electors):

self.code = code
self.electors = electors
State.electors[code] = electors

battleground = [State('AZ', 11), State('PA', 20), State('NV', 6),
State('GA', 16), State('WI', 10), State('MI', 16)]

The total number of electors for an empty set of states is 0.

The print_all function prints all elements of an iterable.

def print_all(s):
for x in s:

print(x)

(a) (8.0 points)

Implement wins, a generator function that takes a list of State instances states and an integer k. For
every possible win by at least k among the states, it yields a linked list containing strings of the
two-letter codes for the states in that win.

Any order of the wins and any order of the states within a win is acceptable.

A linked list is a Link instance or Link.empty. The Link class appears on the Midterm 2 Study Guide.

def wins(states, k):
"""Yield each linked list of two-letter state codes that describes a win by at least k.

>>> print_all(wins(battleground, 50))
<AZ PA NV GA WI MI>
<AZ PA NV GA MI>
<AZ PA GA WI MI>
<PA NV GA WI MI>
>>> print_all(wins(battleground, 75))
<AZ PA NV GA WI MI>
"""

if _________:
(a)

yield Link.empty

if states:

first = states[0].electors

http://cs61a.org/assets/pdfs/61a-mt2-study-guide.pdf

Exam generated for <EMAILADDRESS> 10

for win in wins(states[1:], _________):
(b)

yield Link(_________, win)
(c)

yield from wins(states[1:], _________)
(d)

i. (2.0 pt) Which of the these could fill in blank (a)?

k >= 0

k <= 0

k == 0

not states

k >= 0 and not states

k <= 0 and not states

k == 0 and not states

ii. (2.0 pt) Which of the these could fill in blank (b)?

k - first

k + first

k

-k

0

first

min(k, first)

max(k, first)

iii. (2.0 pt) Fill in blank (c).

iv. (2.0 pt) Which of the these could fill in blank (d)?

k - first

k + first

k

-k

0

first

min(k, first)

max(k, first)

Exam generated for <EMAILADDRESS> 11

(b) (7.0 points)

Implement must_win, which takes a list of State instances states and an integer k. It returns a list of
two-letter state codes (strings) for all states that appear in every win by at least k among the states.
Assume wins is implemented correctly.

def must_win(states, k):
"""List all states that must be won in every scenario that wins by k.

>>> must_win(battleground, 50)
['PA', 'GA', 'MI']
>>> must_win(battleground, 75)
['AZ', 'PA', 'NV', 'GA', 'WI', 'MI']
"""
def contains(s, x):

"""Return whether x is a value in linked list s."""

return (_________) and (_________)
(a) (b)

return [_________ for s in states if _________([_________ for w in wins(states, k)])]
(c) (d) (e)

i. (1.0 pt) Which of these could fill in blank (a)?

s is Link.empty

s is not Link.empty

x in s

x not in s

x == s.first

x != s.first

ii. (2.0 pt) Fill in blank (b).

iii. (1.0 pt) Fill in blank (c).

iv. (1.0 pt) Fill in blank (d) with a single function name.

Exam generated for <EMAILADDRESS> 12

v. (2.0 pt) Fill in blank (e).

Exam generated for <EMAILADDRESS> 13

(c) (6.0 points)

Definition. A win by at least k is minimal if every state in it is necessary to win by at least k.

The State class and battleground list are repeated here for convenience. Assume that only this code has
been executed. You may not call wins or must_win.

class State:
electors = {}
def __init__(self, code, electors):

self.code = code
self.electors = electors
State.electors[code] = electors

battleground = [State('AZ', 11), State('PA', 20), State('NV', 6),
State('GA', 16), State('WI', 10), State('MI', 16)]

Implement is_minimal, which takes a non-empty list of strings state_codes in which every element is the
code for some State instance, as well as an integer k. It returns whether the states named in state_codes
form a minimal win by k among all State instances that have ever been constructed.

def is_minimal(state_codes, k):
"""Return whether a non-empty list of state_codes describes a minimal win by
at least k.

>>> is_minimal(['AZ', 'NV', 'GA', 'WI'], 0) # Every state is necessary
True
>>> is_minimal(['AZ', 'GA', 'WI'], 0) # Not a win
False
>>> is_minimal(['AZ', 'NV', 'PA', 'WI'], 0) # NV is not necessary
False
>>> is_minimal(['AZ', 'PA', 'WI'], 0) # Every state is necessary
True
"""
assert state_codes, 'state_codes must not be empty'

votes_in_favor = _________
(a)

total_possible_votes = sum(_________)
(b)

def win_margin(n):
"Margin of victory if n votes are in favor and the rest are against."

return n - (total_possible_votes - n)

if win_margin(sum(votes_in_favor)) < k:

return False # Not a win

in_favor_no_smallest = _________
(c)

return win_margin(in_favor_no_smallest) < k

Exam generated for <EMAILADDRESS> 14

i. (2.0 pt) Fill in blank (a). You may not write battleground in your response.

ii. (2.0 pt) Fill in blank (b). You may not write battleground in your response.

iii. (2.0 pt) Which of these could fill in blank (c). Check all that apply.

Hint: Two states may have the same number of electors.

2 sum(votes_in_favor) - min(votes_in_favor)

2 sum(votes_in_favor - min(votes_in_favor))

2 sum(votes_in_favor - [min(votes_in_favor)])

2 sum(votes_in_favor.remove(min(votes_in_favor)))

2 sum([v for v in votes_in_favor if v > min(votes_in_favor)])

Exam generated for <EMAILADDRESS> 15

4. (22.0 points) Last Lecture AMA

Llambda the llama breeder had four original llamas, but now has 12. An arrow from one llama to another
indicates that the first is a parent of the second. For example, Jackie’s parents are Sidney and Finley.

All llamas except the originals have 2 parents, and each has a unique name.

Definition. An offspring tree is a Tree instance with string labels in which each node represents a llama and
the branches of a node represent its (biological) children.

The Tree class appears on the Midterm 2 Study Guide.

Assume originals is a list of offspring trees for the original four.

originals = [Tree('Charlie', ...), Tree('Sidney', ...),

http://cs61a.org/assets/pdfs/61a-mt2-study-guide.pdf

Exam generated for <EMAILADDRESS> 16

Tree('Finley', ...), Tree('Frankie', ...)]

(a) (6.0 points)

Implement related, which takes two strings a and b that are names, as well as a list of offspring_trees
for the originals. It returns whether a and b are related. That is, they either share a common ancestor or
one is an ancestor of the other.

def related(a, b, offspring_trees):
"""Return whether the llamas named a and b are related.

>>> related('Charlie', 'Max', originals) # Grandparent
True
>>> related('Jules', 'Jackie', originals) # Not related, even though they have child
False
>>> related('Max', 'Jules', originals) # Both descend from Charlie and Frankie
True
>>> related('Max', 'Jess', originals) # Both descend from Charlie and Finley
True
"""

def family(t):
"""Return a list of the names of all llamas in Tree t."""

result = _________
(a)

for b in t.branches:

result._________(_________)
(b) (c)

return result

for s in _________:
(d)

if a in s and b in s:

return True

return False

i. (1.0 pt) Which of these could fill in blank (a)?

[]

[t]

[t.label]

list(t.branches)

[b.label for b in t.branches]

Exam generated for <EMAILADDRESS> 17

ii. (1.0 pt) Which of these could fill in blank (b)?

append

extend

pop

remove

insert

iii. (2.0 pt) Fill in blank (c).

iv. (2.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 18

(b) (8.0 points)

This figure is repeated for convenience:

Implement parents, which takes two strings a and b that are names of llamas, as well as a list of
offspring_trees for the originals. It returns whether a and b are both parents of the same child.

def parents(a, b, offspring_trees):
"""Return whether a and b are both parents of the same child.

>>> parents('Jules', 'Jackie', originals) # Parents of Alex
True
>>> parents('Jules', 'Finley', originals) # Parents of Jess
True
>>> parents('Jules', 'Jaidyn', originals)
False
>>> parents('Jules', 'Sidney', originals)
False
"""

storage = {}

def traverse(t):

for b in _________:
(a)

if _________:
(b)

storage[b.label] = []

storage[b.label]._________
(c)

(d)

Exam generated for <EMAILADDRESS> 19

for t in _________:
(e)

traverse(t)

return _________([a in s and b in s for s in storage._________])
(f) (g)

i. (1.0 pt) Which of these could fill in blank (a)?

t.branches

b.branches

branches(t)

branches(b)

ii. (1.0 pt) Fill in blank (b).

iii. (2.0 pt) Fill in blank (c).

iv. (1.0 pt) Fill in blank (d).

v. (1.0 pt) Which of these could fill in blank (e)?

offspring_trees

map(traverse, offspring_trees)

map(list, offspring_trees)

filter(traverse, offspring_trees)

filter(list, offspring_trees)

vi. (1.0 pt) Fill in blank (f) with a single function name.

Exam generated for <EMAILADDRESS> 20

vii. (1.0 pt) Which of these could fill in blank (g)?

values()

keys()

items()

copy()

Exam generated for <EMAILADDRESS> 21

(c) (6.0 points)

Definition. A llama p is multigenerational if it has a child whose other parent is also a parent of p’s
grandchild.

For example:

• Finley has a child Jess whose other parent Jules is also a parent of Alex, which is Finley’s grandchild.

• Frankie has a child Jan whose other parent Finley is also a parent of Jess, which is Frankie’s grandchild.

Hint: In the diagram above, the labels a through e correspond to the five joined tables in the query and
are meant to help you.

Complete a query that selects a one-column table with the name of each multigenerational llama. The
result has two rows: Finley and Frankie.

SELECT a.parent FROM family AS a, family AS b, family AS c, family AS d, family AS e

WHERE _____ AND _____ AND _____ AND _____ AND _____ AND _____;
(u) (v) (w) (x) (y) (z)

Exam generated for <EMAILADDRESS> 22

i. (1.0 pt) Which of these could fill in blank (u)?

a.child = b.parent

a.parent = b.parent

a.child = b.child

ii. (1.0 pt) Which of these could fill in blank (v)?

b.parent = c.parent

b.parent != c.parent

b.parent = c.child

b.parent != c.child

iii. (1.0 pt) Which of these could fill in blank (w)?

b.child = c.child

b.child != c.child

b.child < c.child

iv. (1.0 pt) Which of these could fill in blank (x)?

a.parent = d.parent

a.parent = d.child

a.parent != d.parent

a.parent != d.child

v. (1.0 pt) Which of these could fill in blank (y)?

c.parent = e.parent

c.parent = e.child

c.parent != e.parent

c.parent != e.child

vi. (1.0 pt) Which of these could fill in blank (z)?

d.child = e.parent

d.child = e.child

d.child != e.parent

d.child != e.child

Exam generated for <EMAILADDRESS> 23

5. (10.0 points) SchemeQL

(a) (4.0 points)

Implement the procedure cons that behaves just like the built-in cons when called on a value x and a
(possibly empty) list s. You may not write cons in your solution.

(define (cons x s) (_________ _________ _________))
; (a) (b) (c)

i. (1.0 pt) Which of these could fill in blank (a)?

list

append

if

map

lambda

ii. (2.0 pt) Fill in blank (b).

iii. (1.0 pt) Which of these could fill in blank (c)? Check all that apply.

2 s

2 (cdr s)

2 (car s)

2 (list s)

Exam generated for <EMAILADDRESS> 24

(b) (6.0 points)

The join procedure takes two lists of lists s and t. It returns a list of lists that has one element for each
possible pairing of an element of s with an element of t. Each element of the result is a list that has all
the elements of a list from s followed by all the elements of a list from t.

For example:

scm> (define instructors '(
(john 61a)
(hany 61a)
(josh 61b)))

instructors
scm> (define grades '(

(a b)
(c d)))

grades
scm> (join instructors grades)
((john 61a a b) (john 61a c d) (hany 61a a b) (hany 61a c d) (josh 61b a b) (josh 61b c d))

Implement join.

(define (join s t)

(if (null? s) nil

(_________ (_________ (lambda (v) (_________ _________ _________)) t)
; (a) (b) (c) (d) (e)

(join _________ t))))
; (f)

i. (1.0 pt) Fill in blank (a) with a single procedure name or symbol.

ii. (1.0 pt) Fill in blank (b) with a single procedure name or symbol.

iii. (1.0 pt) Fill in blank (c) with a single procedure name or symbol.

iv. (1.0 pt) Fill in blank (d).

Exam generated for <EMAILADDRESS> 25

v. (1.0 pt) Which of these could fill in blank (e)?

s

t

v

vi. (1.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 26

No more questions.

