
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Final

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except three hand-written 8.5" × 11"
crib sheets of your own creation and the official CS 61A midterm study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.
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All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• Before asking a question, read the announcements on the screen/board. We will not answer your question
directly. If we decide to respond, we’ll add our response to the screen/board so everyone can see the clarification.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.
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1. (10 points) Calling All Values (All are in Scope: Environment Diagrams, Mutability, Lambda Expressions,
Python Lists, Higher-Order Functions, WWPD)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. The interactive interpreter displays the
repr string of the value of a successfully evaluated expression, unless it is None. Write “FUNC” to indicate a
functional value.

The first two rows have been provided as an example.

Assume that you have started python3 and executed all the code to the left of the table first.

fandv = lambda f, x: [f, f(x)]

def pv(v):
print(v)
return v

dbl = lambda x: 2*x
Idbl = lambda: pv(lambda x: x) or pv(dbl)

def upto(n):
items = []
for i in range(n):

items.append(i)
yield items

def av(v):
v.append(-1)
return v

def rc(f, n):
def g(y): return [n, f(y)]
return rc(g, n // 2) if n>2 else g(n)

def mx(x):
x += 3

Expression Interactive Output
[2, 3] [2, 3]
print((2, 3)) (2, 3)
fandv(print, print)

Idbl()(pv(17) and pv(1))

[ av(x) for x in upto(2)][0]

rc(lambda x: x, 9)

z=4
mx(z)
print(z)
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2. (10 points) Environmentally Friendly (At least one of these is out of Scope: Environment Diagrams,
Lambda Expressions, Higher-Order Functions, Python Lists, Mutability, Nonlocal)

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer notation for list values. You do not need to write index numbers or the word “list”.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

def ice():
vic = [3,2,1,[0]]
vic = vic.pop()
vic.append(vic)
yu = lambda y: y[y[0]]
def tor(ri):

def skate(vic):
nonlocal yu
if yu == vic:

yu = skate
return [0]

return yu(skate(yu))
return tor(yu)

ice()

Global frame
ice func ice() [parent=Global]

f1: [parent= ]

Return value

f2: [parent= ]

Return value

f3: [parent= ]

Return value

f4: [parent= ]

Return value
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3. (8 points) Get the Point? (All are in Scope: Python Lists, Mutability) Fill in the environment diagram
that results from executing each block of code below until the entire program is finished or an error occurs.
Use box-and-pointer notation for lists. You don’t need to write index numbers or the word list. Erase or cross
out any boxes or pointers that are not part of a final diagram.

a. (3 pt)

t = [1,[2,[3]],[4,5]]
t.append(t[:])

Global frame
t

b. (2 pt)

t = [1, 2, 3]
t[1:3] = [t]
t.extend(t)

Global frame
t

c. (3 pt)

t = [[1,2],[3,4]]
t[0].append(t[1:2])

Global frame
t
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4. (14 points) O! Pascal

Pascal’s Triangle is perhaps familiar to you from the diagram below, which shows the first five rows.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Every square is the sum of the two squares above it (as illustrated by the arrows showing here the value 4
comes from), unless it doesn’t have two squares above it, in which case its value is 1.

(a) (4 pt) (All are in Scope: Linked Lists, Mutability) Given a linked list that represents a row in Pascal’s
triangle, return a linked list that will represent the row below it. See page 2 of the Midterm 2 study guide
for the definition of the Link class. However, your solution must not use L.__getitem__(k) (or L[k]). You
may not need all the lines.

def pascal_row(s):
"""
>>> a = Link.empty
>>> for _ in range(5):
... a = pascal_row(a)
... print(a)
<1>
<1 1>
<1 2 1>
<1 3 3 1>
<1 4 6 4 1>
"""
if s is Link.empty:

return ______________________________________________________

start = Link(1)
last, current = start, s

while ____________________________________________________________:

______________________________________________________________

______________________________________________________________

______________________________________________________________

__________________________________________________________________

return start
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(b) (4 pt) (All are in Scope: Linked Lists, Mutability) Fill in the procedure below to create a full Pascal Triangle
of height k. Represent the entire triangle as a linked list of the rows of the triangles, which are also linked
lists. Again, your solution must not use L.__getitem__(k) method (or L[k]).

def make_pascal_triangle(k):
"""
>>> make_pascal_triangle(5)
<<1> <1 1> <1 2 1> <1 3 3 1> <1 4 6 4 1>>
"""

if k == 0:

_________________________________________________________________________________

row = Link(1)

end = _______________________________________________________________________________

result = end

for _ in range(k-1):

row = ___________________________________________________________________________

_________________________________________________________________________________

end = ___________________________________________________________________________

return result
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(c) (4 pt) (All are in Scope: Linked Lists, Mutability) Pascal’s Triangle contains many patterns within it. For
instance, consider the diagonals. The first diagonal (going down the left side) is just a series of 1s. The second
diagonal (consisting of the second elements of each row) is the counting numbers. The third diagonal is the
triangular numbers.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Ones

Counting

Triangular

Fill in the procedure below to take in a Pascal Triangle (represented by a linked list from part b) and return
a linked list containing the indicated diagonal. As before, your solution must not use L.__getitem__(k)
(or L[k]), and you may not need all the lines.

def diagonal(tri, n):
"""
>>> triangle = make_pascal_triangle(5)
>>> print(diagonal(triangle, 1))
<1 1 1 1 1>
>>> print(diagonal(triangle, 2))
<1 2 3 4>
>>> print(diagonal(triangle, 3))
<1 3 6>
"""
if tri is Link.empty:

_________________________________________________________________________________

p, j = tri.first, 1

while _______________________________________________________________________________:

p, j = ____________________________________, ____________________________________

if __________________________________________________________________________________:

return __________________________________________________________________________

return ______________________________________________________________________________

(d) (2 pt) (At least one of these is out of Scope: Asymptotic Notation) Circle the Θ expression that describes
the number of integers contained in the value of the expression make_pascal_triangle(n).

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n) None of these
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5. (13 points) Level-Headed Trees (All are in Scope: Mutable Trees, Tree Recursion, Generators) A level-
order traversal of a tree, T , traverses the root of T (level 0), then the roots of all the branches of T (level 1)
left to right, then all the roots of the branches of the nodes traversed in level 1, (level 2) and so forth. Thus, a
level-order traversal of the tree

1

2

5 6

3

7

4

8 9

visits nodes with labels 1, 2, 3, 4, 5, 6, 7, 8, 9 in that order.

(a) (9 pt) Fill in the following generator function to yield the labels of a given tree in level order. All trees are
of the class Tree, defined on page 2 of the Midterm 2 Study Guide. The strategy is to use a helper function
that yields nodes at one level, and then to call this function with increasing levels until a level does not yield
any labels. You may not need all the lines.

def level_order(tree):
"""Generate all labels of tree in level order."""
def one_level(tree, k):

"""Generate the labels of tree at level k."""

if _____________________________________________________________________________:

_____________________________________________________________________________

else:

for child in ________________________________________________________________:

_________________________________________________________________________

level, count = 0, True

while count:

count = 0

________________________________________________________________________________

for label in ___________________________________________________________________:

____________________________________________________________________________

____________________________________________________________________________

________________________________________________________________________________
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(b) (4 pt) Write a function that, given a Python list of values and a tree, returns whether the list contains the
labels of the tree in level order. Assume tree is an instance of the Tree class on your Midterm 2 Study Guide.

def same_level_order(tree, s):
"""Return True if and only if list s contains the labels of tree in level order.

>>> t = Tree(1, [Tree(2, [Tree(3), Tree(4)]), Tree(5)])
>>> same_level_order(t, [1, 2, 5, 3, 4])
True
>>> same_level_order(t, [1, 2, 3, 4, 5])
False
>>> same_level_order(t, [1, 2, 5, 3, 4, 6])
False
>>> same_level_order(t, [1, 2, 5, 3])
False
"""

k = 0

for label in ____________________________________________________________________________:

if _______________________________________ or _______________________________________:

return False

k += 1

return ___________________________________________________________________________________
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6. (10 points) Simplify! Simplify! (All are in Scope: Scheme Lists, Interpreters) For this problem, consider
a very small subset of Scheme containing only if expressions, (if pred then-part else-part), and atoms
including symbols, #t for true, and #f for false. Such expressions can be simplified according to the following
transformation rules. Here, P, E1, and E2 are Scheme expressions in the subset, and P', E1', and E2' are their
simplified versions.

• The expression (if P E1 E2) simplifies to

– E1' if P' is #t.
– E2' if P' is #f.
– E1' if E1' equals E2'.
– Otherwise, an if expression with P', E1', and E2' as the predicate, then-part, and else-part.

• Any expression, E, simplifies to #t if E is known to be true (see below); or to #f if it is known to be false.

• Finally, in the expression (if P E1 E2), P' is known to be true while simplifying E1 and is known to be
false while simplifying E2. Initially, only #t is known to be true and only #f is known to be false.

Fill in the blanks on the next page so that (simp E) returns the simplified version of E according to these
rules, and the helper function (simp-context E known-t known-f) returns the simplification of E given that
known-t is a list of expressions known to be true, and known-f is a list of expressions known to be false.

For convenience, assume that (nth k L) is defined to return element k of list L (where 0 is the first), and that
(in? E L) is defined to return true if and only if E is equal? to a member of the list L.

scm> (simp '(if a b c))
(if a b c)

scm> (simp '(if a b b))
b

scm> (simp '(if #t (if #f a b) c))
b

scm> (simp '(if a (if a b c) (if a d e)))
(if a b e)

scm> (simp '(if (if #t a b) (if a d e) f))
(if a d f)

scm> (simp '(if (if a b b) (if b c d) (if e f f)))
(if b c f)

scm> (simp '(if (if a b c) (if (if a b c) x y) (if (if a b c) y z)))
(if (if a b c) x z)

scm> (simp '(if (if a b c) (if (if a (if a b b) c) d e) f))
(if (if a b c) d f)
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(define (simp expr)

(simp-context expr ____________________________________ ____________________________________))

(define (simp-context expr known-t known-f)

(define simp-expr (if (pair? expr)

(simp-if (nth 1 expr) (nth 2 expr) (nth 3 expr) known-t known-f)

expr))

(cond (_________________________________________________________________________________ #t)

(_________________________________________________________________________________ #f)

(else _______________________________________________________________________________)))

(define (simp-if pred then-part else-part known-t known-f)

(let ((simp-pred (simp-context pred _______________________________________________________)))

(define simp-then

_________________________________________________________________________________________)

(define simp-else

_________________________________________________________________________________________)

(cond ((equal? simp-pred #t) simp-then)

(_________________________________________________________________________ simp-else)

(_________________________________________________________________________ simp-then)

(else ____________________________________________________________________________))))
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7. (10 points) Friendship Consider the table friends, defined

CREATE TABLE friends AS
SELECT "Jerry" AS p1, "Neil" AS p2 UNION
SELECT "Neil" , "Jerry" UNION
SELECT "Neil" , "John" UNION
SELECT "John" , "Neil" UNION
SELECT "John" , "Paul" UNION
SELECT "Paul" , "John";

This particular definition is intended as an example; your code should work for any definition of friends in
which all pairs of friends appear in both orders and people are not friends of themselves.

(a) (3 pt) (All are in Scope: SQL) Define a table friends2 containing friends-of-friends (or friends2). For
example, Jerry and Neil are friends, Neil and John are friends, so Jerry and John are friends of friends. Be
careful! Jerry is not a second degree friend to himself. The column names should be p1 and p2, as in friends.
Expected output:

sqlite> SELECT * FROM friends2;
Jerry|John
John|Jerry
Neil|Paul
Paul|Neil

CREATE TABLE friends2 AS

SELECT ________________________________________________________________________________

FROM ________________________________________________________________________________

WHERE _______________________________________________________________________________;
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(b) (7 pt) (All are in Scope: SQL, More SQL) We could go on to define a table of friends3 (such as Jerry|Paul
and Paul|Jerry), but let’s go further and define a table of friends5 called friends5 that contains pairs of
friends of friends of friends of friends of friends. We want pairs of people who are friends5 but are not friends,
friends2, friends3, or friends4. Our small sample friends table has no such pairs, alas, but we can always
dream.
To tell that a pair of people are strictly friends5, we can build a table containing pairs of people plus a
“friendship distance” for all distances up to 5. Then we can select just those pairs that appear at distance 5
but never appear at a lesser distance.

CREATE TABLE friends5 AS

WITH distances(p1, p2, dist) AS (

SELECT ___________________________________________________________ from friends UNION

SELECT ______________________________________________________________________________

FROM distances AS d, friends AS f

WHERE _____________________________________________________________________________

)

SELECT _________________________ FROM _______________________________________________

GROUP BY __________________________________, ______________________________________

HAVING ____________________________________________________________________________;


