
CS 61A Final Review
Spring 2023 Discussion 13: April 26, 2023

Final Review
The following worksheet is final review! It covers various topics that have been seen throughout the semester.

Your TA will not be able to get to all of the problems on this worksheet so feel free to work through the remaining
problems on your own. Bring any questions you have to office hours or post them on piazza.

Good luck on the final and congratulations on making it to the last discussion of CS61A!

Recursion
Q1: Paths List

(Adapted from Fall 2013) Fill in the blanks in the implementation of paths, which takes as input two positive
integers x and y. It returns a list of paths, where each path is a list containing steps to reach y from x by repeated
incrementing or doubling. For instance, we can reach 9 from 3 by incrementing to 4, doubling to 8, then incrementing
again to 9, so one path is [3, 4, 8, 9].

def paths(x, y):
"""Return a list of ways to reach y from x by repeated
incrementing or doubling.
>>> paths(3, 5)
[[3, 4, 5]]
>>> sorted(paths(3, 6))
[[3, 4, 5, 6], [3, 6]]
>>> sorted(paths(3, 9))
[[3, 4, 5, 6, 7, 8, 9], [3, 4, 8, 9], [3, 6, 7, 8, 9]]
>>> paths(3, 3) # No calls is a valid path
[[3]]
>>> paths(5, 3) # There is no valid path from x to y
[]
"""
if x > y:

return []
elif x == y:

return [[x]]
else:

a = paths(x + 1, y)
b = paths(x * 2, y)
return [[x] + subpath for subpath in a + b]

2 Final Review

Mutation
Q2: Reverse

Write a function that reverses the given list. Be sure to mutate the original list. This is practice, so don’t use the
built-in reverse function!

def reverse(lst):
"""Reverses lst using mutation.

>>> original_list = [5, -1, 29, 0]
>>> reverse(original_list)
>>> original_list
[0, 29, -1, 5]
>>> odd_list = [42, 72, -8]
>>> reverse(odd_list)
>>> odd_list
[-8, 72, 42]
"""
iterative solution
midpoint = len(lst) // 2
last = len(lst) - 1
for i in range(midpoint):

lst[i], lst[last - i] = lst[last - i], lst[i]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 3

Trees
Q3: Widest Level

Write a function that takes a Tree object and returns the elements at the depth with the most elements.

In this problem, you may find it helpful to use the second optional argument to sum, which provides a starting value.
All items in the sequence to be summed will be concatenated to the starting value. By default, start will default to
0, which allows you to sum a sequence of numbers. We provide an example of sum starting with a list, which allows
you to concatenate items in a list.

def widest_level(t):
"""
>>> sum([[1], [2]], [])
[1, 2]
>>> t = Tree(3, [Tree(1, [Tree(1), Tree(5)]),
... Tree(4, [Tree(9, [Tree(2)])])])
>>> widest_level(t)
[1, 5, 9]
"""
levels = []
x = [t]
while x:

levels.append([t.label for t in x])
x = sum([t.branches for t in x], [])

return max(levels, key=len)

I would definitely let students know about summing lists with the `sum` function and a
default value along with reminding them about the key argument in the `max` function.
Before throwing students into the function since it is conceptually hard, you could

give them some conceptual starting point to spend less time on it.

Main Idea we'll traverse each level of the tree and keep track of the
elements of the levels. After we're done, we return the level with the most
items.

Here, `x` keeps track of the trees in the current level. To get the next
level of trees, we take all the branches from all the trees in the current
level. The special `sum` call is needed to make sure we get a list of
trees, instead of a list of branches (since branches are a list of trees
themselves).

Finally, we use `max` with a key to select the list with the longest
length from our list of levels.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Final Review

Q4: In-order traversal

Write a function that returns a generator that generates an “in-order” traversal, in which we yield the value of every
node in order from left to right, assuming that each node has either 0 or 2 branches.

def in_order_traversal(t):
"""
Generator function that generates an "in-order" traversal, in which we
yield the value of every node in order from left to right, assuming that each node
has either 0 or 2 branches.

For example, take the following tree t:
1

2 3
4 5

6 7

We have the in-order-traversal 4, 2, 6, 5, 7, 1, 3

>>> t = Tree(1, [Tree(2, [Tree(4), Tree(5, [Tree(6), Tree(7)])]), Tree(3)])
>>> list(in_order_traversal(t))
[4, 2, 6, 5, 7, 1, 3]
"""
if t.is_leaf():

yield t.label
else:

left, right = t.branches
yield from in_order_traversal(left)
yield t.label
yield from in_order_traversal(right)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 5

Linked Lists
Q5: Deep Map

Implement deep_map, which takes a function f and a link. It returns a new linked list with the same structure as
link, but with f applied to any element within link or any Link instance contained in link.

The deep_map function should recursively apply fn to each of that Link’s elements rather than to that Link itself.

Hint: You may find the built-in isinstance function for checking if something is an instance of an
object. For example: >>> isinstance([1, 2, 3], list) True >>> isinstance(Link(1), Link) True >>>
isinstance(Link(1, Link(2)), list) False

def deep_map(f, link):
"""Return a Link with the same structure as link but with fn mapped over
its elements. If an element is an instance of a linked list, recursively
apply f inside that linked list as well.

>>> s = Link(1, Link(Link(2, Link(3)), Link(4)))
>>> print(deep_map(lambda x: x * x, s))
<1 <4 9> 16>
>>> print(s) # unchanged
<1 <2 3> 4>
>>> print(deep_map(lambda x: 2 * x, Link(s, Link(Link(Link(5))))))
<<2 <4 6> 8> <<10>>>
"""
if link is Link.empty:

return link
if isinstance(link.first, Link):

first = deep_map(f, link.first)
else:

first = f(link.first)
return Link(first, deep_map(f, link.rest))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Final Review

Generators
Q6: Repeated

Write a generator function that yields functions that are repeated applications of a one-argument function f. The
first function yielded should apply f 0 times (the identity function), the second function yielded should apply f once,
etc.

def repeated(f):
"""
>>> double = lambda x: 2 * x
>>> funcs = repeated(double)
>>> identity = next(funcs)
>>> double = next(funcs)
>>> quad = next(funcs)
>>> oct = next(funcs)
>>> quad(1)
4
>>> oct(1)
8
>>> [g(1) for _, g in
... zip(range(5), repeated(lambda x: 2 * x))]
[1, 2, 4, 8, 16]
"""

g = lambda x : x
while True:

yield g
g = (lambda g: lambda x: f(g(x)))(g)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 7

Scheme
Q7: Group by Non-Decreasing

Define a function nondecreaselist, which takes in a scheme list of numbers and outputs a list of lists, which overall
has the same numbers in the same order, but grouped into lists that are non-decreasing.

For example, if the input is a stream containing elements

(1 2 3 4 1 2 3 4 1 1 1 2 1 1 0 4 3 2 1)

the output should contain elements

((1 2 3 4) (1 2 3 4) (1 1 1 2) (1 1) (0 4) (3) (2) (1))

Note: The skeleton code is just a suggestion; feel free to use your own structure if you prefer.

(define (nondecreaselist s)

(if (null? s)
nil
(let ((rest (nondecreaselist (cdr s))))

(if (or (null? (cdr s)) (> (car s) (car (cdr s))))
(cons (list (car s)) rest)
(cons (cons (car s) (car rest)) (cdr rest))

)
)

)
)

(expect (nondecreaselist '(1 2 3 1 2 3)) ((1 2 3) (1 2 3)))

(expect (nondecreaselist '(1 2 3 4 1 2 3 4 1 1 1 2 1 1 0 4 3 2 1))
((1 2 3 4) (1 2 3 4) (1 1 1 2) (1 1) (0 4) (3) (2) (1)))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Final Review

SQL
The following questions will refer to two tables: - records: a table that stores information about the employees at
a small company - meetings: a table which records the divisional meetings at the company

records

Name Division Title Salary Supervisor

Ben Bitdiddle Computer Wizard 60000 Oliver Warbucks
Alyssa P Hacker Computer Programmer 40000 Ben Bitdiddle
Cy D Fect Computer Programmer 35000 Ben Bitdiddle
Lem E Tweakit Computer Technician 25000 Ben Bitdiddle
Louis Reasoner Computer Programmer Trainee 30000 Alyssa P Hacker
Oliver Warbucks Administration Big Wheel 150000 Oliver Warbucks
Eben Scrooge Accounting Chief Accountant 75000 Oliver Warbucks
Robert Cratchet Accounting Scrivener 18000 Eben Scrooge
… … … … …

meetings

Division Day Time

Accounting Monday 9am
Computer Wednesday 4pm
Administration Monday 11am
Administration Wednesday 4pm
… … …

Q8: Oliver Employee Meetings

Write a query that outputs the meeting days and times of all employees directly supervised by Oliver Warbucks.

SELECT m.day, m.time FROM records AS r, meetings AS m WHERE r.division = m.division
AND r.supervisor = "Oliver Warbucks";

Q9: Different Division

Write a query that outputs the names of employees whose supervisor is in a different division.

SELECT e.name FROM records AS e, records AS s WHERE e.supervisor = s.name AND e.division
!= s.division;

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Final Review 9

Q10: Num Meetings

Write a query that outputs the days of the week for which fewer than 5 employees have a meeting. You may assume
no department has more than one meeting on a given day.

SELECT m.day FROM records AS e, meetings AS m WHERE e.division = m.division GROUP BY m.
day HAVING COUNT(*) < 5;

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Final Review
	Recursion
	Q1: Paths List

	Mutation
	Q2: Reverse

	Trees
	Q3: Widest Level
	Q4: In-order traversal

	Linked Lists
	Q5: Deep Map

	Generators
	Q6: Repeated

	Scheme
	Q7: Group by Non-Decreasing

	SQL
	Q8: Oliver Employee Meetings
	Q9: Different Division
	Q10: Num Meetings

