
CS 61A Trees
Spring 2023 Discussion 5: February 22, 2023

Data Abstraction
Data abstraction is a powerful concept in computer science that allows programmers to treat code as objects. For
example, using code to represent cars, chairs, people, and so on. That way, programmers don’t have to worry about
how code is implemented; they just have to know what it does.

Data abstraction mimics how we think about the world. If you want to drive a car, you don’t need to know how the
engine was built or what kind of material the tires are made of to do so. You just have to know how to use the car
for driving itself, such as how to turn the wheel or press the gas pedal.

A data abstraction consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

Programmers design data abstractions to abstract away how information is stored and calculated such that the
end user does not need to know how constructors and selectors are implemented. The nature of abstraction allows
whoever uses them to assume that the functions have been written correctly and work as described.

Trees
One example of data abstraction is with trees.

In computer science, trees are recursive data structures that are widely used in various settings and can be imple-
mented in many ways. The diagram below is an example of a tree.

Example Tree

Notice that the tree branches downward. In computer science, the root of a tree starts at the top, and the leaves
are at the bottom.



2 Trees

Some terminology regarding trees:

• Parent Node: A node that has at least one branch.

• Child Node: A node that has a parent. A child node can only have one parent.

• Root: The top node of the tree. In our example, this is the 1 node.

• Label: The value at a node. In our example, every node’s label is an integer.

• Leaf : A node that has no branches. In our example, the 4, 5, 6, 2 nodes are leaves.

• Branch: A subtree of the root. Trees have branches, which are trees themselves: this is why trees are recursive
data structures.

• Depth: How far away a node is from the root. We define this as the number of edges between the root to the
node. As there are no edges between the root and itself, the root has depth 0. In our example, the 3 node has
depth 1 and the 4 node has depth 2.

• Height: The depth of the lowest (furthest from the root) leaf. In our example, the 4, 5, and 6 nodes are all
the lowest leaves with depth 2. Thus, the entire tree has height 2.

In computer science, there are many different types of trees. Some vary in the number of branches each node has;
others vary in the structure of the tree.

Working with Trees
A tree has both a value for the root node and a sequence of branches, which are also trees. In our implementation,
we represent the branches as a list of trees. Since a tree is a data abstraction, our choice to use lists is just an
implementation detail.

• The arguments to the constructor tree are the value for the root node and an optional list of branches. If no
branches parameter is provided, the default value [] is used.

• The selectors for these are label and branches.

Remember branches returns a list of trees and not a tree directly. It’s important to distinguish between working
with a tree and working with a list of trees.

We have also provided a convenience function, is_leaf.

Let’s try to create the tree from above:

t = tree(1,
[tree(3,

[tree(4),
tree(5),
tree(6)]),

tree(2)])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Trees 3

Tree Data Abstraction Implementation
For your reference, we have provided our implementation of trees as a data abstraction.

def tree(label, branches=[]):
"""Construct a tree with the given label value and a list of branches."""
return [label] + list(branches)

def label(tree):
"""Return the label value of a tree."""
return tree[0]

def branches(tree):
"""Return the list of branches of the given tree."""
return tree[1:]

def is_leaf(tree):
"""Returns True if the given tree's list of branches is empty, and False
otherwise.
"""
return not branches(tree)

Q1: Tree Abstraction Barrier

Consider a tree t constructed by calling tree(1, [tree(2), tree(4)]). For each of the following expressions,
answer these two questions:

• What does the expression evaluate to?

• Does the expression violate any abstraction barriers? If so, write an equivalent expression that does not violate
abstraction barriers.

1. label(t)

2. t[0]

3. label(branches(t)[0])

4. is_leaf(t[1:][1])

5. [label(b) for b in branches(t)]

6. Challenge: branches(tree(5, [t, tree(3)]))[0][0]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Trees

Q2: Height

Write a function that returns the height of a tree. Recall that the height of a tree is the length of the longest path
from the root to a leaf.

def height(t):
"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])
>>> height(t)
2
>>> t = tree(3, [tree(1), tree(2, [tree(5, [tree(6)]), tree(1)])])
>>> height(t)
3
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Trees 5

Q3: Maximum Path Sum

Write a function that takes in a tree and returns the maximum sum of the values along any path in the tree. Recall
that a path is from the tree’s root to any leaf.

def max_path_sum(t):
"""Return the maximum path sum of the tree.

>>> t = tree(1, [tree(5, [tree(1), tree(3)]), tree(10)])
>>> max_path_sum(t)
11
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Trees

Q4: Find Path

Write a function that takes in a tree and a value x and returns a list containing the nodes along the path required
to get from the root of the tree to a node containing x.

If x is not present in the tree, return None. Assume that the entries of the tree are unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

Example Tree

def find_path(t, x):
"""
>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)])] ), tree(15)])
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""
if _____________________________:

return _____________________________
_____________________________:

path = ______________________
if _____________________________:

return _____________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Trees 7

Q5: Perfectly Balanced

Part A: Implement sum_tree, which returns the sum of all the labels in tree t.

Part B: Implement balanced, which returns whether every branch of t has the same total sum and that the branches
themselves are also balanced.

Challenge: Solve both of these parts with just 1 line of code each.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 Trees

def sum_tree(t):
"""
Add all elements in a tree.
>>> t = tree(4, [tree(2, [tree(3)]), tree(6)])
>>> sum_tree(t)
15
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want
def balanced(t):

"""
Checks if each branch has same sum of all elements and
if each branch is balanced.
>>> t = tree(1, [tree(3), tree(1, [tree(2)]), tree(1, [tree(1), tree(1)])])
>>> balanced(t)
True
>>> t = tree(1, [t, tree(1)])
>>> balanced(t)
False
>>> t = tree(1, [tree(4), tree(1, [tree(2), tree(1)]), tree(1, [tree(3)])])
>>> balanced(t)
False
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Trees 9

Q6: Sprout Leaves

Define a function sprout_leaves that takes in a tree, t, and a list of leaves, leaves. It produces a new tree that is
identical to t, but where each old leaf node has new branches, one for each leaf in leaves.

For example, say we have the tree t = tree(1, [tree(2), tree(3, [tree(4)])]):

1
/ \
2 3

|
4

If we call sprout_leaves(t, [5, 6]), the result is the following tree:

1
/ \
2 3

/ \ |
5 6 4

/ \
5 6

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Trees

def sprout_leaves(t, leaves):
"""Sprout new leaves containing the data in leaves at each leaf in
the original tree t and return the resulting tree.

>>> t1 = tree(1, [tree(2), tree(3)])
>>> print_tree(t1)
1
2
3

>>> new1 = sprout_leaves(t1, [4, 5])
>>> print_tree(new1)
1
2
4
5

3
4
5

>>> t2 = tree(1, [tree(2, [tree(3)])])
>>> print_tree(t2)
1
2
3

>>> new2 = sprout_leaves(t2, [6, 1, 2])
>>> print_tree(new2)
1
2
3
6
1
2

"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Trees 11

Additional Practice
Q7: Hailstone Tree

We can represent the hailstone sequence as a tree in the figure below, showing the route different numbers take to
reach 1. Remember that a hailstone sequence starts with a number n, continuing to n/2 if n is even or 3n+1 if n is
odd, ending with 1. Write a function hailstone_tree(n, h) which generates a tree of height h, containing hailstone
numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most two branches (which are also
hailstone trees). Under what conditions do you add the second branch?

def hailstone_tree(n, h):
"""Generates a tree of hailstone numbers that will reach N, with height H.
>>> print_tree(hailstone_tree(1, 0))
1
>>> print_tree(hailstone_tree(1, 4))
1

2
4

8
16

>>> print_tree(hailstone_tree(8, 3))
8

16
32

64
5

10
"""
if _________________________________:

return _________________________________
branches = _________________________________
if ___________ and ___________ and ___________:

branches += _________________________________
return tree(n, branches)

def print_tree(t):
def helper(i, t):

print(" " * i + str(label(t)))
for b in branches(t):

helper(i + 1, b)
helper(0, t)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Data Abstraction
	Trees
	Working with Trees
	Tree Data Abstraction Implementation
	Q1: Tree Abstraction Barrier
	Q2: Height
	Q3: Maximum Path Sum
	Q4: Find Path
	Q5: Perfectly Balanced
	Q6: Sprout Leaves


	Additional Practice
	Q7: Hailstone Tree


