Calculator

Announcements

Exceptions

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError —— A function was passed the wrong number/type of argument
NameError —— A name wasn't found
KeyError —— A key wasn't found in a dictionary

RecursionError —— Too many recursive calls

(Demo)

Try Statements
Try statements handle exceptions

try:
<try suite>
except <exception class> as <name>:
<except suite>
Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

Example: Reduce

Reducing a Sequence to a Value

def reduce(f, s, initial):
"""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

>>> reduce(mul, [2, 4, 81, 1)

?ﬁ.. 16,777,216

pow 4

fis ... 2
a two-argument function *
s is . pow

a sequence of values that can be the second argument

initial is ...

=

a value that can be the first argument

reduce(pow, [1, 2, 3, 41, 2)
(Demo)

Programming Languages

Programming Languages

A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself

e A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU)

* Operations refer to specific hardware memory addresses; no abstraction mechanisms
High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

* Provide means of abstraction such as naming, function definition, and objects

* Abstract away system details to be independent of hardware and operating system

Python 3 Python 3 Byte Code
def square(x): from dis import dis LOAD_FAST 0 (x)
return x * X dis(square) LOAD_FAST 0 (x)

BINARY_ MULTIPLY
RETURN_VALUE

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language! E.g.,

Problem domain: The MediaWiki mark-up language was designed for generating static web
pages. It has built-in elements for text formatting and cross-page linking. It is used, for
example, to create Wikipedia pages

{{Short description|Public university in Berkeley, California}}

{{Redirect-distinguish|Berkeley University|Berkeley College|Berkeley College (Yale University)}}
{{Use American English|date=February 2019}}

{{Use mdy dates|date=November 2018}}

{{Infobox university

| name = University of California, Berkeley
| image = Seal of University of California, Berkeley.svg
| motto = {{lang|la|[[Let there be light|Fiat lux]1}} ([[Latin]])
| mottoeng = "Let there be light"
1

A programming language has:
e Syntax: The legal statements and expressions in the language

e Semantics: The execution/evaluation rule for those statements and expressions

Parsing

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

| (kelement_05) (<element_1> ... <element_n3) || A Scheme list

Each <element> can be a combination or primitive

(+ k3 (+ (x24) (+35))) (+ (-107) 6))

The task of parsing a language involves coercing a string representation of an expression
to the expression itself

(Demo)

Parsing

A Parser takes text and returns an expression

Lexical
analysis

Syntactic :
Tokens analysis Expression

Pair('+', Pair(1, ...))
printed as

(+ 1 (- 23) (x4 5.6))

e Iterative process * Tree-recursive process
* Checks for malformed tokens * Balances parentheses
* Determines types of tokens * Returns tree structure

* Processes one line at a time * Processes multiple lines
AN J AN

Syntactic Analysis
Syntactic analysis identifies the hierarchical structure of an expression, which may be
nested

Each call to scheme_read consumes the input tokens for exactly one expression

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by @
or more expressions: (+123) (/3 (+45))
Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression Expression Tree Representation as Pairs

(=3 FTEHETH TG R
(+ 45) 1

(x678) *3
+ 4 5 x 6 7 8

R o i S o R = Y
FT=ETS

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+1

*1

Sum of the arguments

Product of the arguments

: If one argument, negate it. If more than one, subtract the rest from the first.

: If one argument, invert it. If more than one, divide the rest from the first.

Expression Expression Tree
o5
(% 2 3)

(x255)) +75[6]

* 2 3 x 2 5 5

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

Implementation

Language Semantics

def calc_eval(exp):

A number evaluates...

Recursive call to itself
returns a number

if isinstance(exp, (int, float)):

return exp

elif isinstance(exp, Pair)

to its argument values
arguments = exp.rest.map(calc_eval)

. combined by an operator
returnzg

else: .
A Scheme list

raise TypeError of numbers

for each operand |A call expression evaluates...

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

Implementation Language Semantics

def calc_apply(operator, args):
if operator == '+': +:
return reduce(add, args, 0)
elif operator == '-':

elif operator == 'x':
elif operator == '/':
else:

raise TypeError

(Demo)

Sum of the arguments

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter
Print a prompt

Read text input from the user

Parse the text input into an expression

Evaluate the expression

If any errors occur, report those errors, otherwise

o U A W N R

Print the value of the expression and repeat

(Demo)

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply

Example exceptions

- Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral)

-Syntactic analysis: An extra) raises SyntaxError("unexpected token")

-Eval: An empty combination raises TypeError("() is not a number or call expression")

-Apply: No arguments to - raises TypeError("- requires at least 1 argument")

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error

A well-designed interactive interpreter should not halt completely on an error
so that the user has an opportunity to try again in the current environment

(Demo)

