
Data Examples



Announcements



Examples: Lists



Lists in Environment Diagrams

4



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6

2



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

Global

s list
10

2t 3

list
10

5 6

20



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

Global

s list
10

2t 3

list
10

5 6

20



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6

2 3
5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

Global

s list
10

2t 3

list
10

5 6

2 3
5 6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

Global

s list
10

2t 3

list
10

5 6

2 3
5 6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a
list
0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

4

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

Global

b

s list
10

2t 3

list
10

5 6

list
10

2 3
2

a

list
10

3

9

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

5

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

5

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

5

Global

s list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

5

Global

s list
10

2t 3

list
10

5 6

0

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

5

Global

s list
10

2t 3

list
10

5 6

0

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

list
10

2 3

s → [2, 0] 
t → [2, 3]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

6

Global

s

list
10

2t 3

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

7

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

7

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

7

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6

0



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

7

Global

s

list
10

5t 6

list
10

5 6

Operation Example Result

append adds one 
element to a list

s.append(t) 
t = 0

s → [2, 3, [5, 6]] 
t → 0

extend adds all 
elements in one list 
to another list

s.extend(t) 
t[1] = 0

s → [2, 3, 5, 6] 
t → [5, 0]

addition & slicing 
create new lists 
containing existing 
elements

a = s + [t] 
b = a[1:] 
a[1] = 9 
b[1][1] = 0

s → [2, 3] 
t → [5, 0] 
a → [2, 9, [5, 0]] 
b → [3, [5, 0]]

The list function 
also creates a new 
list containing 
existing elements

t = list(s) 
s[1] = 0

s → [2, 0] 
t → [2, 3]

slice assignment 
replaces a slice with 
new values

s[0:0] = t 
s[3:] = t 
t[1] = 0

32
2 3 5

4
6

0

s → [5, 6, 2, 5, 6] 
t → [5, 0]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop() 



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

s[:1] = [] 
t[0:2] = [] 



Lists in Environment Diagrams
Assume that before each example below we execute: 
s = [2, 3] 
t = [5, 6]

8

OperationOperation Example Result

pop removes & returns 
the last element
pop removes & returns 
the last element

t = s.pop()  s → [2] 
t → 3

remove removes the 
first element equal 
to the argument

remove removes the 
first element equal 
to the argument

t.extend(t) 
t.remove(5)

s → [2, 3] 
t → [6, 5, 6]

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

slice assignment can 
remove elements from 
a list by assigning 
[] to a slice.

s[:1] = [] 
t[0:2] = [] 

s → [3] 
t → []



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

list
0

[t] evaluates to:

1



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
0

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
02

[1, [...], 1, [...]]



Lists in Lists in Lists in Environment Diagrams
t = [1, 2, 3] 
t[1:3] = [t] 
t.extend(t)

9

t = [[1, 2], [3, 4]] 
t[0].append(t[1:2])

Global

t

list
10

1 2
2
3

1 2
1

3

Global

t

list
10

list
10

1 2

list
10

3 4

list
02

[1, [...], 1, [...]]

[[1, 2, [[3, 4]]], [3, 4]]



Examples: Objects



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'



Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

<class Worker>

greeting: 'Sir'



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work() <class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()
'Maam, I work'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()
'Maam, I work'

>>> john.work()

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()
'Maam, I work'

>>> john.work()
Peon, I work
'I gather wealth'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()
'Maam, I work'

>>> john.work()
Peon, I work
'I gather wealth'

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



>>> Worker().work()


>>> jack


>>> jack.work()


>>> john.work()


>>> john.elf.work(john)


jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

11

class Worker:
    greeting = 'Sir'
    def __init__(self):
        self.elf = Worker
    def work(self):
        return self.greeting + ', I work'
    def __repr__(self):
        return Bourgeoisie.greeting

class Bourgeoisie(Worker):
    greeting = 'Peon'
    def work(self):
        print(Worker.work(self))
        return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

>>> Worker().work()
'Sir, I work'

>>> jack
Peon

>>> jack.work()
'Maam, I work'

>>> john.work()
Peon, I work
'I gather wealth'

>>> john.elf.work(john)
'Peon, I work'

<class Worker>

greeting: 'Sir'

<class Bourgeoisie>

greeting: 'Peon'

greeting: 'Maam'

elf:

john <Bourgeoisie>



Examples: Iterables & Iterators



Using Built-In Functions & Comprehensions

13



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

[-4, -3, -2,  3,  2,  4]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1

[5, 8, 13, 21, 34, 55, 89]



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1

[5, 8, 13, 21, 34, 55, 89] {1: [21], 3: [13], 4: [34], 5: [5, 55], 8: [8], 9: [89]}



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1

Does every element equal some other element in s?

[5, 8, 13, 21, 34, 55, 89] {1: [21], 3: [13], 4: [34], 5: [5, 55], 8: [8], 9: [89]}



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1

Does every element equal some other element in s?

[5, 8, 13, 21, 34, 55, 89] {1: [21], 3: [13], 4: [34], 5: [5, 55], 8: [8], 9: [89]}

[-4, -3, -2,  3,  2,  4] False



Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

13

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[-4, -3, -2,  3,  2,  4]
  0   1   2   3   4   5

[2, 4] [1, 2, 3, 4, 5] [0]

[-4, -3, -2,  3,  2,  4] 6 [-4,  3, -2, -3,  2, -4] 1

Does every element equal some other element in s?

[5, 8, 13, 21, 34, 55, 89] {1: [21], 3: [13], 4: [34], 5: [5, 55], 8: [8], 9: [89]}

[-4, -3, -2,  3,  2,  4] False [4, 3, 2, 3, 2, 4] True



Examples: Linked Lists



Linked List Exercises

15



Linked List Exercises

Is a linked list s ordered from least to greatest?

15



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

1 3 4



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

1 3 4 1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 3 4 1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 3 4

1 -3 4

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 3 4

1 -3 4 -4 -1 3

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

1 3 4

1 -3 4 -4 -1 3

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 5 1 4

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 5 1 4x

1 4 3



Linked List Exercises

Is a linked list s ordered from least to greatest?

15

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Create a sorted Link containing all the elements of both sorted Links s & t.

Do the same thing, but never call Link.

1 3 4

1 -3 4 -4 -1 3

1 5 1 4 1 4 51

1 5 1 4x x

1 4 3


