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Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):
if n == 0:

return 1
else:

return b x exp(b, n-1)

exp_fast(b, n):
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b x exp_fast(b, n-1)

square(x):
return x *x X

b =

b-bn_l

ifn=0

otherwise
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if n is even
if n is odd
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Exponentiation

Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):
if n == 0:

return 1
else:

return b x exp(b, n-1)

exp_fast(b, n):
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b x exp_fast(b, n-1)

square(x):
return x *x X

Linear time:
* Doubling the input
doubles the time

 1024x the input takes
1024x as much time

Logarithmic time:

* Doubling the input
increases the time
by one step

* 1024x the input
increases the time
by only 10 steps



Orders of Growth



Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time



Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0
for item 1n a:
for other in b:
if item == other:
count +=1
return count

overlap([3, 5, 7, 6], [4, 5, 6, 5])



Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0

for item in a: 4 0 0 0 0
for other in b:
if item == other: 5 0 1 0 ()
count +=1
return count 6 0 0 0 1

overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 o




Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0 0 0 0 0
for 1tem 1in a:
for other in b:
if item == other: 5 0
count +=1
return count 6 0 0 0 1

overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 0




Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
coun? = 0_ 0 o o ;

for 1tem 1in a:
for other in b:

if item == other: 5 0 1 0 0

count += 1
return count 6 0 0 0 1
overlap([3, 5, 7, 61, [4, 5, 6, 5]) . 0 1 0 0

(Demo)
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Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:
Environments for any function calls currently being evaluated

Parent environments of functions named in active environments

(Demo)

pythontutor.com/

composingprograms.html#code=def%20fib%28n%29%3A%0A%20%20%20%201 f%20n%20%3D%3D%200%200 r%s20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20 return%s20n%0A%20%20%20%20e 1se%3A%0A%20%20%20%20%20%20%20%20 return%20f ib%28n-2%29%20%2B%20 T ib%28n-1%29%0A%20%20%20%20%20%20%20%20%0A f 1b%286%29&mode=display&
origin=composingprograms. js&cumulative=false&py=3&rawInputLstJSON=[]&curInstr=1
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fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)

7 :\\ fib(2) £ib(3)
1 fib(0Q) fib(1) / \ / \
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Has an active environment

fib(5) Can be reclaimed
///////////// \\\\\\\\\\\\\ Hasn't yet been created
fib(3) fib(4)
/ AN
fib(1) fib(2)
| f'bZ;; fT;}1) fib(2) fib(3)
i i
: S NS N
| | fib(0)  ifib(1)i fib(1) fib(2)
0 1 i i s N\

. : (
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reached this step




