Efficiency

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
fib(5) elif n ==
return 1
else:

return fib(n-2) + fib(n-1)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
fib(5) elif n == 1:
return 1
////////////// else:
return fib(n-2) + fib(n-1)
fib(3)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
fib(5) elif n == 1:
return 1
/ \ else:
return fib(n-2) + fib(n-1)
fib(3) fib(4)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
fib(5) elif n == 1:
return 1
/ \ else:
return fib(n-2) + fib(n-1)
fib(3) fib(4)
/ AN
fib(1) fib(2)
/ AN

Recursive Computation of the Fibonacci Sequence

OQur first example of tree recursion: def fib(n):
if n ==
return 0
fib(5) elif n == 1:
return 1
///////////// \\\\\\\\\\\\\ else:
return fib(n-2) + fib(n-1)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ / \ fib(2) fib(3)
1 fib(0) fib(1) / \ / \
‘ fib(0) fib(1) fib(1) fib(2)
’ 1 | | N
0 1 1 fib(0) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey O / O

N -/ ribce) fib(1) % [fib(1) fib(2) "
SR LS Ny
0 1 /i 1 fib(e) fib(1) }
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . ’
. R4 s R .~
' . ' B N
. . ' Re . . .
. . N e S
' . S . .
. 0 N o .
' . S . AN
. . . 0 N
I / .
- 3 I
.
\
. 3
[3
,

"""" Q- E ,"l
| ifib(0) fib(1) 3 {fib(1) fib(2) ™.
e A I 4 N,
0 1 /i 1 fib(e) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . ’
. R4 s R .~
' . ' B N
. . ' Re . . .
. . N e S
' . S . .
. 0 N o .
' . S . AN
. . . 0 N
I / .
- 3 I
.
\
. 3
[3
,

"""" Q- E ,"l
| fib(e) fib(1) % ifib(1) fib(2) ™.
R L S N
0 1 /% 1 fib(e) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . ’
. R4 s R .~
' . ' B N
. . ' Re . . .
. . N e S
' . S . .
. 0 N o .
' . S . AN
. . . 0 N
I / .
- 3 I
.
\
. 3
[3
,

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P -
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . ’
. R4 s R .~
' . ' B N
. . ' Re . . .
. . N e S
' . S . .
. 0 N o .
' . S . AN
. . . 0 N
I / .
- 3 I
.
\
. 3
[3
,

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P -
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . ’
. R4 s R .~
' . ' B N
. . ' Re . . .
. . N e S
' . S . .
. 0 N o .
' . S . AN
. . . 0 N
I / .
- 3 I
.
\
. 3
[3
,

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P -
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1)
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . .
. R4 s R .~
' . [. -
. . ' Re . . .
! P4 S o A
' . S . .
. L, . R .
' . S . AN
. . . 0 N
I / .
=" ' I
.
\
. 3
[3
,

" /fib(@) fib(1) 7 [fib(1) fib(2)

1 4 L 1 fib(e) fib(1)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

* . : . .
. R4 s R .~
' . [. -
. . ' Re . . .
! P4 S o A
' . S . .
. L, . R .
' . S . AN
. . . 0 N
I / .
=" ' I
.
\
. 3
[3
,

" /fib(@) fib(1) 7 [fib(1) fib(2)

1 4 L 1 fib(e) fib(1)

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / O

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P .
S S o ‘ i ‘ / AN
0 1 /% 1 fib(e) fib(1)
....... .______________________._." ORI ‘ :
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / O

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) & ifib(1) fib(2) ™.
0 1 7 P .
S S o ‘ i ‘ / AN
0 1 /% 1 fib(e) fib(1)
....... .______________________._." .‘ ‘ -
0 1

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / O

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) * ifib(1) fib(2) ™.
0 1 2
S S o ‘ i ‘ / AN
0 1 4L 1 fib(e) fib(1)
_______ .______________________._." .‘ ‘ :
0 1
oo @ e .

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / O

"""" Q- E ,"l
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P “
S S o ‘ i ‘ / AN
0 1 4L 1 fib(e) fib(1)
_______ .______________________._." .‘ ‘ :
0 1
@ Q-

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / D

_______ ._ ; ; e I," N
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P “
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1) }
_______ .______________________._." .‘ ‘ :
0 1
@ Q-

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / D

_______ ._ ; ; e I," N
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P “
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1) }
_______ .______________________._." .‘ ‘ :
0 1
@ Q-

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / D

_______ ._ ; ; e I," N
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P “
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1) }
_______ .______________________._." .‘ ‘ :
0 1
@ Q-

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / D

_______ ._ ; ; e I," N
‘ "~ ifib(0) fib(1) % ifib(1) fib(2) ™.
0 1 7 P “
S S o ‘ i ‘ / AN
0 1 /4 1 fib(e) fib(1) }
_______ .______________________._." .‘ ‘ :
0 1
@ Q-

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

1 fib(e) fib(1) | ey N / D

"""" Q- L o .
‘ ' ifib(0@) fib(1) & ifib(1) fib(2) ™
0 1 . ; P
Y o ‘ ‘ / \
0 1 /4 L 1 fib(e) fib(1)
_______ .______________________._." .‘ ‘ :
(Demo) 0 1
@ Q-

Memoization

Memoization

Idea: Remember the results that have been computed before

Memoization

Idea: Remember the results that have been computed before

def memo(f):

Memoization

Idea: Remember the results that have been computed before

def memo(f):

cache = {}

Memoization
Idea: Remember the results that have been computed before
def memo(f):

cache = {}

def memoized(n):

Memoization

Idea: Remember the results that have been computed before

def memo(f):
cache = {}
def memoized(n):

if n not in cache:

Memoization

Idea: Remember the results that have been computed before

def memo(f):
cache = {}
def memoized(n):
if n not in cache:

cachel[n] = f(n)

Memoization

Idea: Remember the results that have been computed before

def memo(f):
cache = {}
def memoized(n):
if n not in cache:
cache[n] = f(n)

return cachel[n]

Memoization

Idea: Remember the results that have been computed before

def memo(f):
cache = {}
def memoized(n):
if n not in cache:
cache[n] = f(n)
return cachel[n]

return memoized

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
“Cache = {3 map to return values

def memoized(n):
if n not in cache:
cache[n] = f(n)
return cachel[n]

return memoized

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
“Cache = {3 map to return values

def memoized(n):
if n not in cache:

cachel[n] = f(n)

retur”iTETQE?EQJ<i Same behavior as f, J

if f is a pure function

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
“Cache = {3 map to return values

def memoized(n):
if n not in cache:

cachel[n] = f(n)

retur”iTETQE?EQJ<i Same behavior as f, J

if f is a pure function

(Demo)

Memoized Tree Recursion

" fib(5)

" £ib(3)
1

fib(4)

.
.
.
.
S
.
.
-
.
.
.
.
.
.
.
.
.
.
. .
. .
.
., .
.
.
’
,
’
.
’
0

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

" £ib(3)
1

fib(4)

.
.
.
.
S
.
.
-
.
.
.
.
.
.
.
.
.
.
. .
. .
.
., .
.
.
’
,
’
.
’
0

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

AN
fib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

" £ib(3)
1

fib(4)

" fib(3)
/
(1)

< §£ib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

< §£ib(2)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

fib(4)

" fib(3)
/
(1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

ss~\ —
P
e ~
/8 =9

o —

—_ f
N
N

o -~

fib(4)

" fib(3)
1)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

ss~\ —
P
e ~
/8 =9

o —

—_ f
N
N

o -~

" fib(3)
1)

fib(4)

Memoized Tree Recursion

@ Call to fib

" fib(5)

@ Found in cache

O Skipped

ss~\ —
P
e ~
/8 =9

o —

—_ f
N
N

o -~

" fib(3)
1)

fib(4)

Exponentiation

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):
if n == 0:
return 1
else:
return b x exp(b, n-1)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):

if n == 0: 1 ifn=0
return 1 = . .
else: b-b"~* otherwise

return b x exp(b, n-1)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):

if n == 0: 1 ifn=0
return 1 = . .
else: b-b"~* otherwise

return b x exp(b, n-1)

1 itn=20
b" =< (b2™)% if n is even

b-b" 1 ifnis odd

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):

if n == 0: 1 ifn=0
return 1 = . .
else: b-b"~* otherwise

return b x exp(b, n-1)

def exp_fast(b, n):
if n == 0:
return 1
elif n % 2 == 0: .
return square(exp_fast(b, n//2)) 1) itn =0
else: b" =< (b2™)? if n is even
return b x exp_fast(b, n-1) , ,
b-bv" 1 if nis odd

def square(x):
return x *x X

Exponentiation

Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):
if n == 0:

return 1
else:

return b x exp(b, n-1)

exp_fast(b, n):
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b x exp_fast(b, n-1)

square(x):
return x *x X

b =

b-bn_l

ifn=0

otherwise

ifn=0
if n is even
if n is odd

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):
if n == 0:

return 1
else:

return b x exp(b, n-1)

exp_fast(b, n):
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b x exp_fast(b, n-1)

square(x):
return x *x X

Linear time:
* Doubling the input
doubles the time

 1024x the input takes
1024x as much time

Logarithmic time:

* Doubling the input
increases the time
by one step

* 1024x the input
increases the time
by only 10 steps

Orders of Growth

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0
for item 1n a:
for other in b:
if item == other:
count +=1
return count

overlap([3, 5, 7, 6], [4, 5, 6, 5])

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0

for item in a: 4 0 0 0 0
for other in b:
if item == other: 5 0 1 0 ()
count +=1
return count 6 0 0 0 1

overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 o

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0 0 0 0 0
for 1tem 1in a:
for other in b:
if item == other: 5 0
count +=1
return count 6 0 0 0 1

overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 0

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
coun? = 0_ 0 o o ;

for 1tem 1in a:
for other in b:

if item == other: 5 0 1 0 0

count += 1
return count 6 0 0 0 1
overlap([3, 5, 7, 61, [4, 5, 6, 5]) . 0 1 0 0

(Demo)

Exponential Time

Tree-recursive functions can take exponential time def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Exponential Time

Tree-recursive functions can take exponential time

def fib(n):
if ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Exponential Time

Tree-recursive functions can take exponential time def fib(n):

if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Exponential Time

Tree-recursive functions can take exponential time

def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)
fib(4)
fib(3)
AN / AN
fib(1) fib(1) fib(2)
| | / AN
1 1 fib(0) fib(1)
0 1

Exponential Time

Tree-recursive functions can take exponential time def fib(n):
if n ==
return 0
fib(5) elif n == 1:
return 1
///////////// \\\\\\\\\\\\\ else:
return fib(n-2) + fib(n-1)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ / \ fib(2) fib(3)
1 fib(0) fib(1) / \ / \
‘ fib(0) fib(1) fib(1) fib(2)
’ 1 | | N
0 1 1 fib(0) fib(1)
0 1

Common Orders of Growth

Exponential growth. E.g., recursive fib

Quadratic growth. E.g., overlap

Linear growth. E.g., slow exp

Logarithmic growth. E.g., exp_fast

Constant growth. Increasing n doesn't affect time

Common Orders of Growth

Exponential growth. E.g., recursive fib

a-b"tt=(a-b")-b

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1) ‘n)+a

|
VS
Q

Logarithmic growth. E.g., fast
garithmic grow g., exp_fas CL-ln(Z -n)

(a-=nn)+a-In2

Constant growth. Increasing n doesn't affect time

Time for input n+l
Common Orders of Growth

Exponential growth. E.g., recursive fib

a-b"tt=(a-b")-b

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

Logarithmic growth. E.g., exp_fast CL.ln(Q .n)

(a-=nn)+a-In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib

a-b"tt=(a-b")-b

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib

a-b"tt = (a-b")-b

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib

a-b"tt = (a-b")-b

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

a-(n+1)*=(@-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - 1n(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

a-(n+1)°=(a-n*)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - 1n(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

a-(n+1)°=(a-n°)+a-(2n+1)

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - 1n(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap a-(n+1)2=(a-n*)+a-(2n+1)

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap a-(n+1)2=(a-n*)+a-(2n+1)

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l Time for input n
Common Orders of Growth

Exponential growth. E.g., recursive fib
a-b"tt = (a-b")-b

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap a-(n+1)2=(a-n*)+a-(2n+1)

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

a-(n+1)=(a-n)+a

L 1thmi th. E.g., fast
ogarithmic grow g., exp_fas a - ln(2 . n) — (a, . In n) +a-1In2

Constant growth. Increasing n doesn't affect time

Time for input n+l

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n*)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Time for n+n Time for input n+l

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n*)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Time for n+n Time for input n+l

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n*)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Time for n+n Time for input n+l

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n*)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Time for n+n Time for input n+l

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n*)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

o)

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

o)

O™

Space

Space and Environments

Space and Environments

Which environment frames do we need to keep during evaluation?

Space and Environments

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

Environments for any function calls currently being evaluated

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:
Environments for any function calls currently being evaluated

Parent environments of functions named in active environments

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:
Environments for any function calls currently being evaluated

Parent environments of functions named in active environments

(Demo)

pythontutor.com/

composingprograms.html#code=def%20fib%28n%29%3A%0A%20%20%20%201 f%20n%20%3D%3D%200%200 r%s20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20 return%s20n%0A%20%20%20%20e 1se%3A%0A%20%20%20%20%20%20%20%20 return%20f ib%28n-2%29%20%2B%20 T ib%28n-1%29%0A%20%20%20%20%20%20%20%20%0A f 1b%286%29&mode=display&
origin=composingprograms. js&cumulative=false&py=3&rawInputLstJSON=[]&curInstr=1

Fibonacci Space Consumption

Fibonacci Space Consumption

fib(5)

Fibonacci Space Consumption

fib(5)

/

fib(3)

Fibonacci Space Consumption

fib(5)

/ \

fib(3) fib(4)

Fibonacci Space Consumption

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)
/ AN

Fibonacci Space Consumption

fib(5)

fib(4)

AN
fib(1)
|
1

fib(3)

fib(3)
/

fib(1)

AN
fib(1)

|

1

—_

AN
fib(2

fib(0)

)
N
N
o]
-~
Y— —_
NG
R —
P S
-—
Y—
—_—~
i
(‘1
-
-—
—_ Y=
(@]
o
o)
-
P—I —
NG
R —
= S
-
Y—
—

fib(1)

Fibonacci Space Consumption

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)

| / N\ fib(2) fib(3)
1 fib(0) fib(1) s . // o

| | fib(@) fib(1)! fib(1) fib(2)

° . | I / N\

? 1 1 fib(e) fib(1)
______ — ‘

Assume we have 0 1
reached this step

Fibonacci Space Consumption

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)

7 :\\ fib(2) £ib(3)
1 fib(0Q) fib(1) / \ / \

| | fib(e) (fib(1)| fib(1) fib(2)

0 1 ‘ : ‘ : ‘ // o

0 1 1 fib(e) fib(1)
______ -

reached this step

{ Assume we have J A l

Fibonacci Space Consumption

Has an active environment

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ fib{;; figll) fib(2) fib(3)
i
Lo ‘ NN
fib(0) (fib(1): fib(1) fib(2)
0 1 i ; / o

(
{ Assume we have J ; l

reached this step

Fibonacci Space Consumption

Has an active environment

/flb(s) \ Can be reclaimed
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ fib{;; fT;}l) fib(2) fib(3)
1
Lo ‘ NN
fib(0) (fib(1): fib(1) fib(2)
0 1 i E / o

(
{ Assume we have J ; l

reached this step

Fibonacci Space Consumption

Has an active environment

fib(5) Can be reclaimed
///////////// \\\\\\\\\\\\\ Hasn't yet been created
fib(3) fib(4)
/ AN
fib(1) fib(2)
| f'bZ;; fT;}1) fib(2) fib(3)
i i
: S NS N
| | fib(0) ifib(1)i fib(1) fib(2)
0 1 i i s N\

. : (
{ Assume we have J ; l

reached this step

