Efficiency Announcements

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
® e return @
i elif n ==
return 1
else:

return fib(n-2) + fib(n-1)
Measuring Efficiency 7 Fib(3)

{fib(1) Fib(2) . T
1 fib(g) fi}b(l)\z PN
@ Q
0‘ 1‘ ib(1) fib(2) ™.
e L \ / NS

1 fib(e) fib(1)

Memoization

Idea: Remember the results that have been computed before

de

—+

cache = {}: map to return values

memo (f): i Keys are arguments that }
Memoization def memoized(n):

if n not in cache:
cache[n] = f(n)
return cacheln]

Feturni‘_{"efﬂ?}?erqfi Same behavior as f, }

if f is a pure function

(Demo)

Memoized Tree Recursion

e O e Call to fib
“ fib(5)
\ @ Found in cache
e, o Skipped
fib(4) ™
Exponentiation
[}
fib(3)
N g
fib(2) ™

/

fib(0) fib(1)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):
if n == 0:
return 1
else:
return b x exp(b, n-1)

de

—+

exp_fast(b, n)
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b * exp_fast(b, n-1)

def square(x):
return x * x

1

b’!l —
b- bn—l
1

= (b%n)2
b,bn—l

ifn=0
otherwise

ifn=0
if n is even
if n is odd

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):
if n == 0:

else:
return b x exp(b, n-1)

def exp_fast(b, n)
if n == 0:
return 1
elif n % 2 == 0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)

def square(x):
return x * x

Linear time:

* Doubling the input
doubles the time

¢ 1024x the input takes
1024x as much time

Logarithmic time:

* Doubling the input
increases the time
by one step

¢ 1024x the input
increases the time
by only 10 steps

Orders of Growth

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0
for item in a:
for other in b:
if item == other:
count += 1
return count

overlap([3, 5, 7, 61, [4, 5, 6, 5])

(Demo)

. . Time for n+n Time for input n+l Time for input n
Exponential Time Common Orders of Growth
Tree-recursive functions can take exponential time def fib(n): Exponential growth. E.g., recursive fib a- bt = (a-b")-b
if n == 0: Incrementing n multiplies time by a constant
return 0
fib(5) elif n == 1:
return 1
else: Quadratic growth. E.g., overla
/ \ return fib(n-2) + fib(n-1) (growth. E-g., overtap a-(n+12%=(a-n®+a 2n+1)
£ib(3) fib(4) Incrementing n increases time by n times a constant
/ N
fib(1) fib(2) h 1
Linear growth. E.g., slow ex
| - N\ fib(2) fib(3) ’ ’ ° a-(n+1)=(a-n)+a
1 fib(0) fib(1) / \ / \ Incrementing n increases time by a constant
‘ ‘ fib(0) fib(1) fib(1) fib(2)
’ ' | | N
Logarithmic growth. E.g., exp_fast
0 1 1 fib(e) fib(1) 9 g 9y P a-In(2-n)=(a-lnn)+a-In2
‘ ‘ Doubling n only increments time by a constant
0 1
Constant growth. Increasing n doesn't affect time

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib CICH! o)

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap 0(n?) 0O(n?)

Incrementing n increases time by n times a constant

Order of Growth Notation

Linear growth. E.g., slow exp O(n) O(n)

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast O(logn) O(logn)

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time (1) o(1)

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled
Space
Active environments:
«Environments for any function calls currently being evaluated
-Parent environments of functions named in active environments
(Demo)
Fibonacci Space Consumption Fibonacci Space Consumption
Has an active environment
/////////////flb(S) \\\\\\\\\\\\\ ///////,/////flb(S) \\\\\\\\\\\\\ Can be reclaimed
fib(3) fib(4) fib(3) fib(4)
/ AN
fib(1) fib(2)
‘) / T\ fib(2) fib(3)
1 fib(@) fib(1) a N v N
| | fib(0) [fib(1)} fib(1) £ib(2)
’ I B N N
0 1 1 fib(0) fib(1)
Assume we have) 1
reached this step

Assume we have
reached this step

