Inheritance

Announcements

Attributes

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs
A class is a type (or category) of objects

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology: Python object system:
Functions are objects

Bound methods are also objects: a function
Class

that has its first parameter "self" already
Attributes bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

<instance>.<method_name>

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4.

That value is returned unless it is a function, in which case a bound method is
returned instead

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:
interest = 0.02 # A class attribute

def __init__ (self, account_holder)
self.balance = 0
self.holder = account_holder

Additional methods would be defined here

>>> tom_account = Account('Tom"')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02 The interest attribute is not part of

>>> jim_account.interest the instance; it's part of the class!
0.02

Attribute Assignment

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

e If the object is an instance, then assignment sets an instance attribute

e If the object is a class, then assignment sets a class attribute

class Account: Instance Al
interest = 0.02 Attribute assignment
def __init__(self, holder): Assignment ;)
self.holder = holder This expression statement adds
self.balance = 0 i | evaluates to an or modifies the

object attribute named

“interest” of

tom_account = Account('Tom")

" i tom_account
LBut the name (“interest")}

is not looked up

Class

Attribute : Account.interest = 0.04
Assignment

Attribute Assignment Statements

Account class interest: 0%02 0»04 0.05
attributes (withdraw, deposit, __init__)

balance: 0
holder: 'Tom'

balance: @
holder: ‘Jim'
interest: 0.08

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Inheritance

>>> jim_account = Account('Jim") >>> j;m_account.;nterest = 0.08
>>> tom_account = Account('Tom") >>> jim_account.interest
>>> tom_account.interest 0.08
0.02 >>> tom_account.interest
>>> jim_account.interest 0.04
0.02 >>> Account.interest = 0.05
>>> Account.interest = 0.04 >>> tom_account.interest
>>> tom_account.interest 0.05
0.04 >>> jim_account.interest
>>> jim_account.interest 0.08
0.04
Inheritance Inheritance Example

Inheritance is a technique for relating classes together
A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

class <Name>(<Base Class>):
<suite>
Conceptually, the new subclass inherits attributes of its base class
The subclass may override certain inherited attributes

Using inheritance, we implement a subclass by specifying its differences
from the the base class

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom")

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # Withdrawals incur a $1 fee

14

Most behavior is shared with the base class Account

"""A bank account that charges for withdrawals."""
withdraw_fee = 1
interest = 0.01
def withdraw(self, amount):
return Account.withdraw(self, amount + self.withdraw_fee)

or

return amount + self.withdraw_fee)

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__

>>> ch.interest # Found in CheckingAccount
0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5) # Found in CheckingAccount
14

(Demo)

Object-Oriented Design

Designing for Inheritance

Don't repeat yourself; use existing implementations
Attributes that have been overridden are still accessible via class objects

Look up attributes on instances whenever possible

class CheckingAccount(Account):

"""A bank account that charges for withdrawals."""
withdraw_fee = 1
interest = 0.01

Attribute look-up Preferred to CheckingAccount.withdraw_fee
on base class to allow for specialized accounts

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships
« E.g., a checking account is a specific type of account

+ So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships
« E.g., a bank has a collection of bank accounts it manages

+ So, A bank has a list of accounts as an attribute

(Demo)

Inheritance and Attribute Lookup

Global <class A>

das; ::-1 e AL i —1 — func f(self, x)
et ié:ﬁl:'xﬂ ? <class B inherits from A>
class B(A): >>> c.n g | — |4
n=4 __init_ : — func __init__ (self, y)
Review: Attributes Lookup, Methods, & Inheritance A ¢ close € inherits from B>
class C(B): >>>a.z == C.z c| — func f(self, x)
et ié:ﬁ}*:'xxn True <A instance>
a = A() >>> a.z == b.z a __’I:|
b = 2(1) Lee <B instance>
el ” b

<C instance>

c | —Tr|z: 2

Environment diagrams for objects aren't required, but can be very helpful!

Multiple Inheritance

class SavingsAccount(Account):
deposit_fee = 2
def deposit(self, amount):
return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

Multiple Inheritance CleverBank marketing executive has an idea:
* Low interest rate of 1%

A $1 fee for withdrawals

« A $2 fee for deposits

*« A free dollar when you open your account

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
def __init__(self, account_holder):
self.holder = account_holder
self.balance = 1 # A free dollar!

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
def __init__(self, account_holder):
self.holder = account_holder
self.balance = 1 # A free dollar!

such_a_deal = AsSeenOnTVAccount('John"')
Instance attribute
such_a_deal.balance

>>>
L >>>
1
[SavingsAccount method}> >>> such_a_deal.deposit(20)
19
[ﬁ>>> such_a_deal.withdraw(5)
CheckingAccount method 13

Resolving Ambiguous Class Attribute Names

‘ CheckingAccount ‘ ‘ SavingsAccount ‘

~

| AsSeenOnTVAccount |

>>> such_a_deal = AsSeenOnTVAccount('John')
Instance attribute
>>> such_a_deal.balance

1

[SavingsAccount method >>> such_a_deal.deposit(20)
19

>>> such_a_deal.withdraw(5)
CheckingAccount method 13

