
Generators

Announcements

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

4

(Demo)

>>> def plus_minus(x):

... yield x

... yield -x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> t

<generator object plus_minus ...>

Generators & Iterators

Generator Functions can Yield from Iterables

A yield from statement yields all values from an iterator or iterable (Python 3.3)

6

def a_then_b(a, b):

 yield from a

 yield from b

def a_then_b(a, b):

 for x in a:

 yield x

 for x in b:

 yield x

def countdown(k):

 if k > 0:

 yield k

 yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6]))

[3, 4, 5, 6]

>>> list(countdown(5))

[5, 4, 3, 2, 1]

(Demo)

Example: Partitions

Yielding Partitions

A partition of a positive integer n, using parts up to size m, is a way in which n can be
expressed as the sum of positive integer parts up to m in increasing order.

8

partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

def count_partitions(n, m):

 if n == 0:

 return 1

 elif n < 0:

 return 0

 elif m == 0:

 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

