
Iterators Announcements

Iterators

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]

>>> t = iter(s)

>>> next(t)

3

>>> next(t)

4
>>> u = iter(s)

>>> next(u)

3

>>> next(t)

5

>>> next(u)

4

(Demo)

Dictionary Iteration

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}

>>> d['zero'] = 0

>>> k = iter(d.keys()) # or iter(d)

>>> next(k)

'one'

>>> next(k)

'two'

>>> next(k)

'three'

>>> next(k)

'zero'

>>> v = iter(d.values())

>>> next(v)

1

>>> next(v)

2

>>> next(v)

3

>>> next(v)

0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())

>>> next(i)

('one', 1)

>>> next(i)

('two', 2)

>>> next(i)

('three', 3)

>>> next(i)

('zero', 0)

(Demo)

For Statements

(Demo)

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

(Demo)

Zip

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

Implement palindrome, which returns whether s is the same forward and backward.

>>> palindrome([3, 1, 4, 1, 3])
True
>>> palindrome([3, 1, 4, 1, 5])
False

11

>>> palindrome('seveneves')
True
>>> palindrome('seven eves')
False

Using Iterators

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

• Passing that object to another function always retains the position.

• Useful for ensuring that each element of a sequence is processed only once.

• Limits the operations that can be performed on the sequence to only requesting next.

13

Example: Casino Blackjack

14

Player:

Dealer:

(Demo)

