
Mutability

Announcements

Objects

(Demo)

Objects

4

Objects

•Objects represent information

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object
• All objects have attributes

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object
• All objects have attributes
• A lot of data manipulation happens through object methods

4

Objects

•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object
• All objects have attributes
• A lot of data manipulation happens through object methods
• Functions do one thing; objects do many related things

4

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

6

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

6

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset
•Control characters were designed for transmission

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset
•Control characters were designed for transmission

"Line feed" (\n)

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset
•Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset
•Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

6

(Demo)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Representing Strings: the Unicode Standard

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

'⚅'
7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

'⚅' '♪'
7

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 137,994 characters in Unicode 12.1
•150 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

LATIN CAPITAL LETTER A

DIE FACE-6

EIGHTH NOTE

'⚅' '♪'
7

(Demo)

Mutation Operations

Some Objects Can Change

9

[Demo]

Some Objects Can Change

First example in the course of an object changing state

9

[Demo]

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👶same_person

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👶
BABY

same_person

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👶
BABY

same_person

Unicode
character

name

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👧
GIRL

same_person

Unicode
character

name

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👧
GIRL

jessica
same_person

Unicode
character

name

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👩
WOMAN

jessica
same_person

Unicode
character

name

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👵
OLDER 
WOMAN

jessica
same_person

Unicode
character

name

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👵
OLDER 
WOMAN

jessica
same_person

Unicode
character

name

All names that refer to the same object are affected by a mutation

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👵
OLDER 
WOMAN

jessica
same_person

Unicode
character

name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

Some Objects Can Change

First example in the course of an object changing state

The same object can change in value throughout the course of computation

9

[Demo]

👵
OLDER 
WOMAN

jessica
same_person

Unicode
character

name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!
>>> len(four)
2

def mystery(s):

 s.pop()

 s.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

10

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]
>>> len(four)
4
>>> another_mystery() # No arguments!
>>> len(four)
2

def mystery(s):

 s.pop()

 s.pop()

def another_mystery():

 four.pop()

 four.pop()

pythontutor.com/composingprograms.html#code=def%20mystery%28s%29%3A%0A%20%20%20%20s.pop%28%29%0A%20%20%20%20s.pop%28%29%0A%0Afour%20%3D%20[1,%202,%203,%204]%0Amystery%28four%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

def mystery(s):

 s[2:] = []

or

Tuples

(Demo)

Tuples are Immutable Sequences

12

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change:

>>> x = 2

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change:

>>> x = 2

4

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change:

>>> x = 2

4
>>> x = 3

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change:

>>> x = 2

4
>>> x = 3

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]
>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4
>>> s

>>> x + x

>>> x + x

Tuples are Immutable Sequences

Immutable values are protected from mutation

12

The value of an expression can change because of changes in names or objects

An immutable sequence may still change if it contains a mutable value as an element

>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)

>>> turtle = [1, 2, 3]
>>> ooze()
>>> turtle
['Anything could be inside!']

>>> x + x

>>> x + x

Name change: Object mutation:

>>> x = 2

4
>>> x = 3

6

>>> x = [1, 2]

[1, 2, 1, 2]
>>> x.append(3)

[1, 2, 3, 1, 2, 3]

>>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

>>> s = ([1, 2], 3)
>>> s[0][0] = 4
>>> s
([4, 2], 3)

>>> x + x

>>> x + x

Mutation

Sameness and Change

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• A rational number is just its numerator and denominator

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

14

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Identity Operators

15

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

15

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

15

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

15

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

15

(Demo)

Mutable Default Arguments are Dangerous

16

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
... s.append(3)
... return len(s)
...

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1
>>> f()
2

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1
>>> f()
2
>>> f()
3

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16
pythontutor.com/composingprograms.html#code=def%20f%28s%3D[]%29%3A%0A%20%20%20%20s.append%283%29%0A%20%20%20%20return%20len%28s%29%0A%20%20%20%20%0Af%28%29%0Af%28%29%0Af%28%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1
>>> f()
2
>>> f()
3

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

16
pythontutor.com/composingprograms.html#code=def%20f%28s%3D[]%29%3A%0A%20%20%20%20s.append%283%29%0A%20%20%20%20return%20len%28s%29%0A%20%20%20%20%0Af%28%29%0Af%28%29%0Af%28%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

>>> def f(s=[]):
... s.append(3)
... return len(s)
...
>>> f()
1
>>> f()
2
>>> f()
3

Each time the function
is called, s is bound
to the same value!

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)

Let's model a bank account that has a balance of $100

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

Argument: 
amount to withdraw

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

18

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

Where's this balance
stored?

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw_list(100)

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

Where's this balance
stored?

18

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw_list(100)

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:

remaining balance

Different

return value!

Where's this balance
stored?

In a (mutable) list
referenced in the parent
frame of the function

18

Second withdrawal of
the same amount

Mutable Values & Persistent Local State

19

Mutable Values & Persistent Local State

19

Mutable Values & Persistent Local State

19

Name bound
outside of

withdraw def

Mutable Values & Persistent Local State

19

Name bound
outside of

withdraw def

Element
assignment

changes a list

Mutable Values & Persistent Local State

19

Name bound
outside of

withdraw def

Element
assignment

changes a list

Mutable Values & Persistent Local State

withdraw doesn't
reassign any name
within the parent

19

Name bound
outside of

withdraw def

Element
assignment

changes a list

Mutable Values & Persistent Local State

withdraw doesn't
reassign any name
within the parent

It changes the contents
of the b list

19

Name bound
outside of

withdraw def

Element
assignment

changes a list

