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•Objects represent information
•They consist of data and behavior, bundled together to create abstractions
•Objects can represent things, but also properties, interactions, & processes
•A type of object is called a class; classes are first-class values in Python
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object
• All objects have attributes
• A lot of data manipulation happens through object methods
• Functions do one thing; objects do many related things
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The value of an expression can change because of changes in names or objects
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>>> turtle = (1, 2, 3)
>>> ooze()
>>> turtle
(1, 2, 3)
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>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
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Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call
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>>> def f(s=[]):
...     s.append(3)
...     return len(s)
... 
>>> f()
1
>>> f()
2
>>> f()
3

Each time the function 
is called, s is bound 
to the same value!
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A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw_list(100)

Let's model a bank account that has a balance of $100

Argument: 
amount to withdrawReturn value:


remaining balance

Different

return value!

Where's this balance 
stored?

In a (mutable) list 
referenced in the parent 
frame of the function

18

Second withdrawal of 
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Mutable Values & Persistent Local State

withdraw doesn't 
reassign any name 
within the parent

It changes the contents 
of the b list
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Name bound 
outside of 

withdraw def

Element 
assignment 

changes a list


