Mutability

Announcements

Objects

(Demo)

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
* Object-oriented programming:

* A metaphor for organizing large programs

* Special syntax that can improve the composition of programs
e In Python, every value is an object

e All objects have attributes

* A lot of data manipulation happens through object methods

* Functions do one thing; objects do many related things

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

"Bell” (\a) lagc11 code Chart [Hiine e (W)]

0,1,2,3,4,5 7,8,9,Al(B,C, D, E, F
000 [NUL [SOH [STX |ETX [EOT [ENQ [ACKBEL | BS | HT | LF'| VT | FF | CR | S0 | SI
@01 2| I[DLE|DCI|DC2|DC3[DCA |NAK|[SYN |ETB|CAN| EM [SUB|ESC| FS | GS | RS | US
010 3S|2 T [# S [% & | (][*]|+]+]- 7
011 o|3[o 1|23 |a|5] 6|7 [8]9]:]:|<]|=][>]¢2
100 |4 @[A[B|C|[D|E|F|G[H|[I[J[K[L|M|[N]oO
101 Z|s5[pP[a[R[s|TJulv]w]|x]Yy|lz]r[\N[1[A~]-
110 “|6] ~|a|blc|d|le|f|9|h|i|j|k|[L|m|[n]o
111 ®|7[plalr[s|t|u|v] w|[x|y|[z]|€]|T]|¥]~[0EL

16 columns: 4 bits

® Layout was chosen to support sorting by character code
*Rows indexed 2-5 are a useful 6-bit (64 element) subset

e Control characters were designed for transmission

(Demo)

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1 g | @E w5 EE'" HrJ'i‘ H& EF
- o | BH X 5
* 150 scripts (organized) st | am | ams | ams | sws | s | eom m:
® Enumeration of character properties,];7[% HIE‘% Hﬁl] ng\ HF)](HBIL Hﬁ'i HEEJ
such as case om | s | em | e | sms | e | s | em
® Supports bidirectional display order EE @ t@ %@ ﬁié %i? %@ 9:]"!‘
* A canonical name for every character % E j,_,:— ?}é ?_?': ﬁz]g m %
ARV AN AR Ak A

LATIN CAPITAL LETTER A 1 I I

DIE FACE-6

EIGHTH NOTE

(Demo)

Mutation Operations

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘ .

same_person | — (/5 o

s

i

All names that refer to the same object are affected by a mutation

Unicode
character
name

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> mystery(four)
>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!
>>> len(four)

def mystery(s): or def mystery(s):

s.pop()
s.pop()

def another_mystery():
four.pop()
four.pop()

s[2:1 =[]

Only objects of mutable types can change: lists & dictionaries 2
{Demo}
Tuples are Immutable Sequences
Immutable values are protected from mutation
>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()
>>> turtle >>> turtle
(1, 2, 3) ['Anything could be inside!']
The value of an expression can change because of changes in names or objects
Tuples
S>> X = 2 >>> x = [1, 2]
>>> X + X >>> X + X
. 4 : P (1, 2, 1, 2]
Name change: oas x = 3 Object mutation: >>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]
An immutable sequence may still change if it contains a mutable value as an element
>>> s = ([1, 2], 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0][0] = 4
(Demo) ERROR >>> 5

(14, 21, 3)

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
<A rational number is just its numerator and denominator

-This view is no longer valid in the presence of change

<A compound data object has an "identity" in addition to the pieces of which it is composed

<A list is still "the same" list even if we change its contents

MUtatlon - Conversely, we could have two lists that happen to have the same contents, but are different
>>> a = [10] >>> a = [10]
>>> b = a >>> b = [10]
>>> a==>b >>> g == b
True True
>>> a.append(20) >>> b.append(20)
>>> a >>> a
[10, 20] [10]
>>> b >>> b
[10, 20] [10, 20]
>>>a ==b >>> g ==
True False
Identity Operators Mutable Default Arguments are Dangerous
Identity A default argument value is part of a function value, not generated by a call

<exp@> is <expl>

evaluates to True if both <exp@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

>>> def f(s=[]): Global frame func f(s) [parent=Global]
s.append(3) f /

return len(s) fist

ces . _ 3
.. f() fl: f [parent=Global]

1 S

>>> f() Return |4

2 value Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!

s

Return
value 2

f3: f [parent=Global]

s

Return
value 3

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

In a (mutable) list
referenced in the parent

>>> withdraw = make_withdraw_list(100) frame of the function

50

>>> withdraw(25) Second withdrawal of
the same amount

return value!

Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

[Different

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

Mutable Values & Persistent Local State

Global frame

make_withdraw_list

withdraw \

f1: make_withdraw_list [parent=Global]

withdraw doesn't
reassign any name
within the parent

{ withdraw

Return’
value

f2: withdraw [parent=f1]

amount |25

Return
value

func make_withdraw_list(balance) [parent=Global]

O i
: ‘Z) It changes the contents
T of the b list

\func withdraw(amount) [parent=f1]

def make_withdraw_list(balance):
b = [balance]

def withdraw(amount):

if amount > b[0]:

Name bound
outside of
withdraw def

b[@] = b[@] - amount
return b[e]
return withdraw

Element
assignment
changes a list

withdraw = make_withdraw_1ist(100)
withdraw(25)

return 'Insufficient funds'

