Trees

Announcements

Trees

Tree Abstraction

or Root Node

(wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return tree(0]

def branches(tree):
return tree([1:]

+ A tree has a root label
and a list of branches

+ Each branch is a tree

3
1 2
/ N
1 1

>>> tree(3, [tree(1),
BN tree(2, [tree(1),

s tree(1)1)1)
[3, [11, [2, [1], [11]]

Implementing the Tree Abstraction

def tree(label, branches=[]):

+ A tree has a root label
and a list of branches

+ Each branch is a tree

/for branch in branches: Verifies the
i assert is_tree(branch) \ tree definition

Creates a list 3
from a sequence
of branches
Verifies that / AN
1

tree is bound 1
to a list

def label(tree):
return treel0]

def branches(tree):
return tree[1:]

. >>> tree(3, [tree(1)
for len(tree) < 1: . tree(2, [tree(1),
tree(1)1)1)

return False ce

for branch in branches(tree): [3, [11, [2, [11, [11]1]

if not is_tree(branch):
return False

def is_leaf(tree):

return True

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

(Demo)

return not branches(tree) (Demo)

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4] 1, [1) def leaves(tree):
[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [])
[1] >>> leaves(fib_tree(5))
>>> sum([[[1]11, [2] 1, [I) [1, 0,1, 0,1, 1,0, 1]
[[11, 2] e
if is_leaf(tree):
return [label(tree)]
else:
return sum(List of leaf labels for each branch = [])
branches(tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)
[branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]

([leaves(b) for b in branches(tree)]] [leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

def

def

increment_leaves(t):
"""Return a tree like t but with leaf labels incremented."""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

increment(t):
"""Return a tree like t but with all labels incremented."""
return tree(label(t) + 1, [increment(b) for b in branches(t)])

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)1)])
>>> count_paths(t, 3)
z>> count_paths(t, 4)<q
3» count_paths(t, 5)
S>> count_paths(t, 6)
l>> count_paths(t, 7)<

if label(t) == total;

found = 1 1

else:

found = 0

return found + sum ([_count_paths(b, total - label(t)) for b in branches(t)])

