

Announcements

Trees

Tree Abstraction
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

def tree(label, branches=[]):

return [label]l + branches

def label(tree):
return treel[0]

def branches(tree):
return tree[l:]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),

tree(2, [tree(1),
- tree(1)1)1)
[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]): . - A tree has a root label
‘for branch in branches: \<{ Verifies the j and a list of branches

N Q§§?Eﬁmi§=ﬁfﬁﬁigﬁiﬂﬁhli"mFjee definition - Each branch is a tree

def label(tree): Creates a list 3
return treel0] from a sequence /////’ \\\\\
of branches
def branches(tree): — 1 2
return tree[1:] verifies that / N\
: tree 1s bound 1 1
to a list

def iS__’_C__If_Q_Q_(__’_C__If_Cf_Q_)_E ------------------- >>> tree(3, [tree(1),

if {type(tree) != listior len(tree) < 1: tree(2, [tree(1),
return False . tree(1)1)1)
for branch in branches(tree): [3, [11, [2, [1], [11]]

if not is_tree(branch):
return False
return True

def is leaf(tree):
return not branches(tree) (Demo)

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

(Demo)

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4]1 1, []) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1)

[1] >>> leaves(fib_tree(5))

>>> sum([[[1]1], [2]1 1, [1) (1, o, 1, 0, 1, 1, 0, 1]

[[1]' 2] 1mmini
if is_leaf(tree):
return [label(tree)]

else:
return sum(List of leaf labels for each branch , [1)

branches(tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)]
[branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]

[leaves(b) for b in branches(tree)] [leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

def

def

increment_leaves(t):
"""Return a tree like t but with leaf labels incremented."""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

increment(t):
"""Return a tree like t but with all labels incremented.™""
return tree(label(t) + 1, [increment(b) for b in branches(t)])

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2 5;ﬁ§i§n‘
>>> count_paths(t, 4)< B3 hE
2 R
>>> count_paths(t, 5) //////ﬁixtii\\\\<xx
@ EEE \:‘:i\ ‘\\
>>> count_paths(t, 6) —1 R, 1
1 O" ‘~ :‘= T -'v' ““:‘Q l“ :
>>> count_paths(t, 7)< SN (
%IIII E 2 ' \‘ 3 T 1
if label(t) == total: N
found = 1 i 1
else:
found = 0

return found + sum ([count_paths(b, total - label(t)) for b in branches(t)])

