
Trees

Announcements

Trees

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),

... tree(2, [tree(1),

... tree(1)])])

[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):

 return tree[0]

def branches(tree):

 return tree[1:]

Implementing the Tree Abstraction

(Demo)

6

 for branch in branches:

 assert is_tree(branch)

 return [label] + list(branches)

def is_leaf(tree):

 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):

 return tree[0]

def branches(tree):

 return tree[1:]

def is_tree(tree):

 if type(tree) != list or len(tree) < 1:

 return False

 for branch in branches(tree):

 if not is_tree(branch):

 return False

 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),

... tree(2, [tree(1),

... tree(1)])])

[3, [1], [2, [1], [1]]]

2

1

3

1

1

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

(Demo)

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

def leaves(tree):

 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))

 [1, 0, 1, 0, 1, 1, 0, 1]

 """

 if is_leaf(tree):

 return [label(tree)]

 else:

 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])

[1, 2, 3, 4]

>>> sum([[1]], [])

[1]

>>> sum([[[1]], [2]], [])

[[1], 2]

List of leaf labels for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment(t):

 """Return a tree like t but with all labels incremented."""

 return tree(label(t) + 1, [increment(b) for b in branches(t)])

def increment_leaves(t):

 """Return a tree like t but with leaf labels incremented."""

 if is_leaf(t):

 return tree(label(t) + 1)

 else:

 bs = [increment_leaves(b) for b in branches(t)]

 return tree(label(t), bs)

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum
def count_paths(t, total):

 """Return the number of paths from the root to any node in tree t

 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])

 >>> count_paths(t, 3)

 2

 >>> count_paths(t, 4)

 2

 >>> count_paths(t, 5)

 0

 >>> count_paths(t, 6)

 1

 >>> count_paths(t, 7)

 2

 """

 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

1

found = 0

sum count_paths(b, total - label(t))

2

3

-1 11

-1

1

3

