
Data Abstraction

Announcements

Data Abstraction

Data Abstraction

4

Data Abstraction

• Compound values combine other values together

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

!How data are manipulated (as units)

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

!How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

!How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

All
Programmers

4

Data Abstraction

• Compound values combine other values together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• Data abstraction lets us manipulate compound values as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

!How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

All
Programmers

Great
Programmers

4

Rational Numbers

5

Rational Numbers

numerator

denominator

5

Rational Numbers

Exact representation of fractions

numerator

denominator

5

Rational Numbers

Exact representation of fractions

A pair of integers

numerator

denominator

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

numerator

denominator

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

5

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

Selectors

5

Rational Number Arithmetic

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

nx

dx

ny

dy
*

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

nx

dx

ny

dy
*

nx*ny

dx*dy
=

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

6

General FormExample

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

6

General FormExample

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

7

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

7

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

7

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

7

SelectorsSelectors

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

7

SelectorsSelectors

These functions implement an
abstract representation

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

7

SelectorsSelectors

These functions implement an
abstract representation

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):
 print(numer(x), '/', denom(x))

7

SelectorsSelectors

These functions implement an
abstract representation

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

def mul_rational(x, y):

 return rational(numer(x) * numer(y),

 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):
 print(numer(x), '/', denom(x))

def rationals_are_equal(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

7

SelectorsSelectors

These functions implement an
abstract representation

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Representing Rational Numbers

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

9

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

9

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]

9

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]

def denom(x):
 """Return the denominator of rational number X."""
 return x[1]

9

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

Select item from a list

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]

def denom(x):
 """Return the denominator of rational number X."""
 return x[1]

9

def rational(n, d):

 """Construct a rational number that represents N/D."""

 return [n, d]

Representing Rational Numbers

Construct a list

Select item from a list

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]

def denom(x):
 """Return the denominator of rational number X."""
 return x[1]

9

(Demo)

Reducing to Lowest Terms

Example:

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

15

6

1/3

1/3
*

5

2
=

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

15

6

1/3

1/3
*

5

2
=

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

15

6

1/3

1/3
*

5

2
=

10

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

def rational(n, d):

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

def rational(n, d):
 """Construct a rational that represents n/d in lowest terms."""

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

def rational(n, d):
 """Construct a rational that represents n/d in lowest terms."""
 g = gcd(n, d)

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

def rational(n, d):
 """Construct a rational that represents n/d in lowest terms."""
 g = gcd(n, d)
 return [n//g, d//g]

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

10

from math import gcd

def rational(n, d):
 """Construct a rational that represents n/d in lowest terms."""
 g = gcd(n, d)
 return [n//g, d//g]

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

10

from math import gcd

def rational(n, d):
 """Construct a rational that represents n/d in lowest terms."""
 g = gcd(n, d)
 return [n//g, d//g]

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

10

(Demo)

Abstraction Barriers

Abstraction Barriers

12

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data values

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element lists

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element liststwo-element lists list literals and element selection

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element liststwo-element lists list literals and element selection

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element liststwo-element lists list literals and element selection

Implementation of lists

Abstraction Barriers

12

Parts of the program that... Treat rationals as...Treat rationals as... Using...

Use rational numbers  
to perform computation whole data valueswhole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations	

numerators and
denominators

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals	 two-element liststwo-element lists list literals and element selection

Implementation of lists

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

13

Does not use
constructors

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

13

Does not use
constructors Twice!

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

13

Does not use
constructors Twice!

No selectors!

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

13

Does not use
constructors Twice!

No selectors!

And no constructor!

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):

 return [x[0] * y[1], x[1] * y[0]]

13

Violating Abstraction Barriers

13

Data Representations

What are Data?

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

• Data abstraction uses selectors and constructors to define behavior

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

• Data abstraction uses selectors and constructors to define behavior

• If behavior conditions are met, then the representation is valid

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

• Data abstraction uses selectors and constructors to define behavior

• If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

15

What are Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

• Data abstraction uses selectors and constructors to define behavior

• If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

15

(Demo)

Rationals Implemented as Functions

16

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

Rationals Implemented as Functions

16

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

16

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

Constructor is a
higher-order function

16

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

Constructor is a
higher-order function

Selector calls x

16

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

Constructor is a
higher-order function

Selector calls x

16

x = rational(3, 8)

numer(x)

def rational(n, d):

 def select(name):

 if name == 'n':

 return n

 elif name == 'd':

 return d

 return select

def numer(x):

 return x('n')

def denom(x):

 return x('d')

This
function

represents
a rational

number

Rationals Implemented as Functions

Constructor is a
higher-order function

Selector calls x

16pythontutor.com/composingprograms.html#code=def%20rational%28n,
%20d%29%3A%0A%20%20%20%20def%20select%28name%29%3A%0A%20%20%20%20%20%20%20%20if%20name%20%3D%3D%20'n'%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%20%20%20%20elif%20name%20%3D%3D%20'd'%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20d%0A%20%20%20%20return%20select%
0A%20%20%20%20%0Adef%20numer%28x%29%3A%0A%20%20%20%20return%20x%28'n'%29%0A%0Adef%20denom%28x%29%3A%0A%20%20%20%20return%20x%28'd'%29%0A%20%20%20%20%0Ax%20%3D%20rational%283,%208%29%0Anumer%28x%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

x = rational(3, 8)

numer(x)

