Functional Abstraction

Announcements

Office Hours: You Should Go!

Office Hours: You Should Go!

You are not alone!

Office Hours: You Should Go!

You are not alone!

https://cs6la.org/office-hours/

Partial Function Application & Currying

Returning a Function to Wait for More Arguments

def make_adder(n):
def adder(k):
return n + Kk
return adder

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
return n + Kk return n + k

return adder

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
freturn n + k return n +mkmﬁ<:{Identical code gives}

''' ’ identical behavior
return adder

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
i:"return n + k return n + Kk ~?;<[Identica1 code gives}
e ' identical behavior
return adder

make_adder(3) returns a function that bundles together two things:

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
i:"return n + k return n + k-~‘}<[Identical code gives}
e ' identical behavior
return adder

make_adder(3) returns a function that bundles together two things:
* The function's behavior: return n + k

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
i:"return n + k return n + k-~‘}<[Identical code gives}
e ' identical behavior
return adder

make_adder(3) returns a function that bundles together two things:
* The function's behavior: return n + k
e The value of n: 3

Returning a Function to Wait for More Arguments

def make_adder(n): def add(n, k):
def adder(k):
i"return n + k return n + Kk ~‘}<{Identical code gives}
e ' identical behavior
return adder

make_adder(3) returns a function that bundles together two things:
* The function's behavior: return n + k

e The value of n: 3

add(3, 4) applies addition to the arguments 3 and 4, while
make_adder(3) partially applies addition, but is still waiting for k.

Function Currying

def make_adder(n): def add(n, k):
def adder(k):
freturn n + k return ﬁ";mkm?<:{Identical code gives}

'' ’ identical behavior
return adder

Function Currying

def make_adder(n): def add(n, k):
def adder(k):
freturn n + k return n + Kk ?<:{Identica1 code gives}
e ' identical behavior
return adder

Curry: Transform a multi-argument function into a single—-argument, higher-order function
with the same behavior.

Function Currying

def make_adder(n): def add(n, k):
def adder(k):
freturn n + k return n + Kk ?<:{Identica1 code gives}
e identical behavior
return adder

Curry: Transform a multi-argument function into a single—-argument, higher-order function
with the same behavior.

>>> make_adder(2)(3)
5

>>> add(2, 3)

5

Function Currying

def make_adder(n): def add(n, k):
def adder(k):
freturn n + k return n + Kk ¥<:{Identica1 code gives}
e identical behavior
return adder

Curry: Transform a multi-argument function into a single—-argument, higher-order function
with the same behavior.

>>> make_adder(2)(3)

5

>>> add(2, 3) (Demo)
5

Lambda Function Environments

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

https://pythontutor. com, ograms . html#c 9%29%3A%0A%20%20%20%202%20%3D%202%0A%20%20%20%20 re turns: 201, y 9%28y umulative=truegcurInstr=L =display&origin=composingprograms. j s&py=3&rawInputLstISON=%5B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

a =1
def f(g):
a =2

return lambda y: a * g(y)
f(lambda y: a + y) (a)

https://pythontutor. com/composingprograms. html#code=a%20%30%201%0Ade %20 5280%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20 returnss20

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

a =1
def f(g):
a =2

return lambda y: a * g(y)
f(lambda y: a + y) (a)
YA\

Un-indented lambda
expressions always
have parent=Global

unulativestruescurInstrs =display&origin=composingprograns. j s&py=3&rawInputLstISON=558%5D

https://pythontutor. com/composingprograms. html#code=a%20%30%201%0Ade %20 5280%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20 returnss20

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

- A lambda expression
a =1 within the body of f
def f(g): will have an f frame

as its parent
a = 2 P

\/
return lambda y: a * g(y)
f(lambda y: a + y) (a)
YA\

Un-indented lambda
expressions always
have parent=Global

https://pythontutor. com,

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

: A lambda expression Frames Objects
a = . .
W:!‘thln the bOdy of f Global frame func f(g) [parent=Globall
def f(g): will have an f frame
3 = 2 as 1its parent &I func A(y) <line 5> [parent=Global]
. f

\/ . i
return lambda y: a * g(y) func A(y) <line 4> [parent=f1]

f(lambda y: a + y) (a)
YA\

Un-indented lambda ;‘«'
expressions always ot
have parent=Global L L

I

=display&origin=composingprograms. j s&py=3&rawInputLstISON=%5B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

: A lambda expression Frames Objects
a = . .
W:!‘thln the bOdy of f Global frame func f(g) [parent=Globall
def f(g): will have an f frame
3 = 2 as 1its parent o func A(y) <line 5> [parent=Global]
- f
\V4 : N
return lambda y: a * g(y) func A(y) <line 4> [parent=fl]
fl: f [parent=Globall]
f(lambda y: a + y)(a)
g
/\ a |2
Un-indented lambda Return
expressions always value

have parent=Global f2: A <line 4> [parent=f1]

y (1

Return
value

f3: A <line 5> [parent=Globall]

y |1

Return

2
value

https://pythontutor. com, ograms . html#c g eturns201 9%28y umulative=true&curInstr=0&mode=displaysorigin=composingprograms. js&py=3&rawInputLstISON=45B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

A lambda expression

a =1 within the body of f
def f(g): |will have an f frame
. as its parent

\/
1 return lambda y: a * g(y)
f(lambda y: a + y)|(a)

L f1: f [parent=Global]

Frames Objects

func f(g) [parent=Globall
a |1 .

func A(y) <line 5> [parent=Global]
f

func A(y) <line 4> [parent=fl]

Global frame

g

/\

Un-indented lambda
expressions always
have parent=Global

a

Return
value

f2: A <line 4> [parent=f1]

y (1

Return

4
value

f3: A <line 5> [parent=Globall]

y |1

Return
value

eturns201 9%28y umulative=true&curInstr=0&mode=displaysorigin=composingprograms. js&py=3&rawInputLstISON=45B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

: A lambda expression Frames Objects
a — . c
W:!‘thln the bOdy of f Global frame func f(g) [parent=Globall
def f(g): will have an f frame
3 = 2 as 1its parent o func A(y) <line 5> [parent=Global]
- f
1 g V. a ey : e U B
Cf1: f [parent=Global]
f(lambda y: a + y)|(a)
g
/\ .
Un-indented lambda ; Return
expressions always value |

have parent=Global f2: A <line 4> [parent=f1]

y (1

Return
value

4
f3: A <line 5> [parent=Globall]
y |1

Return
value

ulative=true&curInstr=g&mode=display&origin=composingprograms. j s&py=3&rawInputLstISON=%56%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

A lambda expression

f1:f

Frames

Global frame

[parent=Global]

L. within the body of f
2 def f(g): |will have an f frame
. as its parent
a =2 Y
4 return lambda y: a * |g(y)
f(lan/l\bda s e \

Un-indented lambda
expressions always
have parent=Global

i f2:

:f3: A <line 5>

a

Return
value

<line 4> [parent=fl]

y

Return |
value

Objects

func f(g) [parent=Globall
1/qunc A(y) <line 5> [parent=Global]
f

func A(y) <line 4> [parent=fl]

ograms. j s&py=3&rawInputLstISON=%5B%5D

Decorators

Function Decorators

(Demo)

Function Decorators

(Demo)

@tracel
def triple(x):
return 3 x X

Function Decorators

(Demo)

Function
decorator L -

def triple(x):
return 3 x

Function Decorators

(Demo)

Function

decorator

def triple(x): < Decorated

return 3 x x|

Function Decorators

(Demo)

Function

decorator

def triple(x): < lecorated

return 3 x x|

is identical to

Function Decorators

(Demo)

Function

decorator

def triple(x): < Decorated

return 3 * X |

is identical to

def triple(x):
return 3 *x X
triple = tracel(triple)

Function Decorators

(Demo)

Function

decorator

def triple(x): < lecorated

return 3 *x X |

is identical to

Why not just

use this?
return 3 x x

triple = tracel(triple) |

Return

Return Statements

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user—-defined function f: switch to a new environment; execute f's body

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of n in reverse order until d is found.

>>> end (34567, 5)
7
6
5

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of n in reverse order until d is found.

>>> end (34567, 5)
7
6
5

while n > @:
last, n=n % 10, n // 10
print(last)

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of n in reverse order until d is found.

>>> end (34567, 5)
7
6
5

while n > ©O:
last, n=n % 10, n // 10
print(last)
if d == last:
return None

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user—-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of n in reverse order until d is found.

>>> end (34567, 5)
7
6
5

while n > 0:
last, n=n % 10, n // 10
print(last)
if d == last:

return None
(Demo)

Designing Functions

Describing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

Describing Functions

def square(x):
IIIIIIReturn X * X.IIIIII

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

Describing Functions

def square(x):
IIIIIIReturn X * X.IIIIII

A function's domain is the set of all inputs it might X 1S a number
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

def square(x):
IIIIIIReturn X * X.IIIIII

X 1S a number

square returns a non-
negative real number

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

def square(x):
IIIIIIReturn X * X.IIIIII

X 1S a number

square returns a non-
negative real number

square returns the
square of x

Abstraction

Functional Abstractions

Functional Abstractions

def square(x):
return mul(x, x)

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

*Square takes one argument.

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

*Square takes one argument. Yes

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?
*Square takes one argument. Yes

*Square computes the square of a number.

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?
*Square takes one argument. Yes

*Square computes the square of a number. Yes

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?
*Square takes one argument. Yes
*Square computes the square of a number. Yes

*Square computes the square by calling mul.

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?
*Square takes one argument. Yes
*Square computes the square of a number. Yes

*Square computes the square by calling mul. No

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

*Square takes one argument. Yes
*Square computes the square of a number. Yes
*Square computes the square by calling mul. No

def square(x):
return pow(x, 2)

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

*Square takes one argument. Yes

*Square computes the square of a number. Yes

*Square computes the square by calling mul. No
def square(x): def square(x):

return pow(x, 2) return mul(x, x-1) + x

Functional Abstractions

def square(x): def sum_squares(x, y):
return mul(x, x) return square(x) + square(y)

What does sum_squares need to know about square?

*Square takes one argument. Yes
-Square computes the square of a number. Yes
*Square computes the square by calling mul. No
def square(x): def square(x):
return pow(x, 2) return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still have the same behavior.

Choosing Names

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

Names should convey the meaning or purpose
of the values to which they are bound.

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To:

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To:

Names should convey the meaning or purpose
true_false rolled_a_one of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To: _

Names should convey the meaning or purpose
true_false rolled_a_one of the values to which they are bound.
d dice

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To: .
Names should convey the meaning or purpose
true_false rolled_a_one of the values to which they are bound.
d dice The type of value bound to the name is best
documented in a function's docstring.
helper take_turn

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To: .
Names should convey the meaning or purpose
true_false rolled_a_one of the values to which they are bound.
d dice The type of value bound to the name is best
documented in a function's docstring.
helper take_turn
my_int num_rolls Function names typically convey their effect

(print), their behavior (triple), or the
value returned (abs).

Choosing Names

Names typically don’t matter for correctness
but

they matter a lot for composition

From: To: .
Names should convey the meaning or purpose
true_false rolled_a_one of the values to which they are bound.
d dice The type of value bound to the name is best
documented in a function's docstring.
helper take_turn
my_int num_rolls Function names typically convey their effect

(print), their behavior (triple), or the
1, I, 0 k. i m value returned (abs).

Which Values Deserve a Name

Reasons to add a new name

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

Meaningful parts of complex expressions:

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) — 4 x a x c)) / (2 x a)

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) — 4 x a x c)) / (2 x a)
v

discriminant = square(b) - 4 x a *x ¢
x1 = (-b + sqrt(discriminant)) / (2 * a)

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) — 4 x a x c)) / (2 x a)
v

discriminant = square(b) - 4 x a *x ¢
x1 = (-b + sqrt(discriminant)) / (2 * a)

More Naming Tips

Which Values Deserve a Name

Reasons to add a new name More Naming Tips

Repeated compound expressions: Names can be long if they help

if sqrt(square(a) + square(b)) > 1: document your code:

X = X + sqrt(square(a) + square(b))
v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

average_age = average(age, students)
is preferable to

Compute average age of students
aa = avg(a, st)

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) — 4 x a x c)) / (2 x a)
v

discriminant = square(b) - 4 x a *x ¢
x1 = (-b + sqrt(discriminant)) / (2 * a)

Which Values Deserve a Name

Reasons to add a new name More Naming Tips

Repeated compound expressions: Names can be long if they help

if sqrt(square(a) + square(b)) > 1: document your code:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

average_age = average(age, students)
is preferable to

Compute average age of students
aa = avg(a, st)

Meaningful parts of complex expressions: Names can be short if they represent

generic quantities: counts,

arbitrary functions, arguments to

x1 = (-b + sqrt(square(b) — 4 % a x c)) / (2 % a) mathematical operations, etc.
—~ n, k, i — Usually integers

discriminant = square(b) - 4 x a x c X, ¥, z — Usually real numbers

x1 = (-b + sqrt(discriminant)) / (2 * a) f, g, h — Usually functions

Which Values Deserve a Name

Reasons to add a new name More Naming Tips

Repeated compound expressions: Names can be long if they help

if sqrt(square(a) + square(b)) > 1: document your code:
X = X + sqrt(square(a) + square(b))

v

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
X = X + hypotenuse

average_age = average(age, students)

is preferable to

Compute average age of students
aa = avg(a, st)

Meaningful parts of complex expressions: Names can be short if they represent
generic quantities: counts,

arbitrary functions, arguments to
x1 = (-b + sqrt(square(b) — 4 % a x c)) / (2 % a) mathematical operations, etc.

~ n, k, i — Usually integers
discriminant = square(b) - 4 x a x c X, ¥, z — Usually real numbers
x1 = (-b + sqgrt(discriminant)) / (2 *x a) f, g, h — Usually functions

Errors & Tracebacks

Taxonomy of Errors

Syntax Errors

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

Taxonomy of Errors

Syntax Errors

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

(Demo)

