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Returning a Function to Wait for More Arguments

5

def make_adder(n):

    def adder(k):

        return n + k

    return adder


def add(n, k):


    return n + k

make_adder(3) returns a function that bundles together two things: 
• The function's behavior: return n + k
• The value of n: 3

add(3, 4) applies addition to the arguments 3 and 4, while 
make_adder(3) partially applies addition, but is still waiting for k.

Identical code gives 
identical behavior
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(Demo)

def make_adder(n):

    def adder(k):

        return n + k

    return adder


def add(n, k):


    return n + k Identical code gives 
identical behavior
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Function Decorators

(Demo)

@trace1

def triple(x):

    return 3 * x


is identical to


def triple(x):

    return 3 * x

triple = trace1(triple)


Decorated 
function

Why not just 
use this?

Function 
decorator

10
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Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

    """Print the final digits of n in reverse order until d is found.

    

    >>> end(34567, 5)

    7

    6

    5

    """
    while n > 0:

        last, n = n % 10, n // 10

        print(last)
        if d == last:
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Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

    """Print the final digits of n in reverse order until d is found.

    

    >>> end(34567, 5)

    7

    6

    5

    """
    while n > 0:

        last, n = n % 10, n // 10

        print(last)
        if d == last:

            return None (Demo)
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Describing Functions

A function's domain is the set of all inputs it might 
possibly take as arguments.

A function's range is the set of output values it might 
possibly return.

A pure function's behavior is the relationship it 
creates between input and output.

14

def square(x):

    """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the 
square of x
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Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):

    return pow(x, 2)

def square(x):

    return mul(x, x-1) + x

If the name “square” were bound to a built-in function, 
sum_squares would still have the same behavior. 

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

    return mul(x, x)

def sum_squares(x, y):

    return square(x) + square(y)
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of the values to which they are bound.
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Function names typically convey their effect 
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l, I, O k, i, m
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Runtime Errors
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Detected by the Python 
interpreter while the program 
executes

Not detected by the Python 
interpreter; what tests are for
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