
Functional Abstraction

Announcements

Office Hours: You Should Go!

3

Office Hours: You Should Go!

3

You are not alone!

Office Hours: You Should Go!

3

You are not alone!

https://cs61a.org/office-hours/

Partial Function Application & Currying

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

make_adder(3) returns a function that bundles together two things:

Identical code gives
identical behavior

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

make_adder(3) returns a function that bundles together two things:
• The function's behavior: return n + k

Identical code gives
identical behavior

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

make_adder(3) returns a function that bundles together two things:
• The function's behavior: return n + k
• The value of n: 3

Identical code gives
identical behavior

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

make_adder(3) returns a function that bundles together two things:
• The function's behavior: return n + k
• The value of n: 3

add(3, 4) applies addition to the arguments 3 and 4, while 
make_adder(3) partially applies addition, but is still waiting for k.

Identical code gives
identical behavior

Function Currying

6

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Function Currying

Curry: Transform a multi-argument function into a single-argument, higher-order function
with the same behavior.

6

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Function Currying

>>> make_adder(2)(3)

5

>>> add(2, 3)

5

Curry: Transform a multi-argument function into a single-argument, higher-order function
with the same behavior.

6

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Function Currying

>>> make_adder(2)(3)

5

>>> add(2, 3)

5

Curry: Transform a multi-argument function into a single-argument, higher-order function
with the same behavior.

6

(Demo)

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Lambda Function Environments

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Decorators

Function Decorators

(Demo)

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

Function
decorator

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

Decorated
function

Function
decorator

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

is identical to

Decorated
function

Function
decorator

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

is identical to

def triple(x):

 return 3 * x

triple = trace1(triple)

Decorated
function

Function
decorator

10

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

is identical to

def triple(x):

 return 3 * x

triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

10

Return

Return Statements

12

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

 """Print the final digits of n in reverse order until d is found.

 >>> end(34567, 5)

 7

 6

 5

 """

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

 """Print the final digits of n in reverse order until d is found.

 >>> end(34567, 5)

 7

 6

 5

 """
 while n > 0:

 last, n = n % 10, n // 10

 print(last)

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

 """Print the final digits of n in reverse order until d is found.

 >>> end(34567, 5)

 7

 6

 5

 """
 while n > 0:

 last, n = n % 10, n // 10

 print(last)
 if d == last:

 return None

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

 """Print the final digits of n in reverse order until d is found.

 >>> end(34567, 5)

 7

 6

 5

 """
 while n > 0:

 last, n = n % 10, n // 10

 print(last)
 if d == last:

 return None (Demo)

Designing Functions

Describing Functions

14

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

14

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

14

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

def square(x):

 """Return X * X."""

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

def square(x):

 """Return X * X."""

x is a number

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

def square(x):

 """Return X * X."""

x is a number

square returns a non-
negative real number

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

def square(x):

 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

Abstraction

Functional Abstractions

16

Functional Abstractions

def square(x):

 return mul(x, x)

16

Functional Abstractions

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument. Yes

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

Yes

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

Yes

Yes

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

Yes

Yes

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):

 return pow(x, 2)

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):

 return pow(x, 2)

def square(x):

 return mul(x, x-1) + x

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):

 return pow(x, 2)

def square(x):

 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still have the same behavior.

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

Choosing Names

17

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

17

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

17

Names should convey the meaning or purpose
of the values to which they are bound.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

More Naming Tips

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Errors & Tracebacks

Taxonomy of Errors

Syntax Errors

20

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)  
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

Taxonomy of Errors

Syntax Errors

20

(Demo)

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)  
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

