
Functional Abstraction

Announcements

Office Hours: You Should Go!

3

You are not alone!

https://cs61a.org/office-hours/

Partial Function Application & Currying

Returning a Function to Wait for More Arguments

5

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k

make_adder(3) returns a function that bundles together two things:

• The function's behavior: return n + k

• The value of n: 3

add(3, 4) applies addition to the arguments 3 and 4, while 
make_adder(3) partially applies addition, but is still waiting for k.

Identical code gives
identical behavior

Function Currying

>>> make_adder(2)(3)

5

>>> add(2, 3)

5

Curry: Transform a multi-argument function into a single-argument, higher-order function
with the same behavior.

6

(Demo)

def make_adder(n):

 def adder(k):

 return n + k

 return adder

def add(n, k):

 return n + k Identical code gives
identical behavior

Lambda Function Environments

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

8
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Un-indented lambda
expressions always
have parent=Global

A lambda expression
within the body of f
will have an f frame

as its parent

Decorators

Function Decorators

(Demo)

@trace1

def triple(x):

 return 3 * x

is identical to

def triple(x):

 return 3 * x

triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

10

Return

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

12

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

 """Print the final digits of n in reverse order until d is found.

 >>> end(34567, 5)

 7

 6

 5

 """
 while n > 0:

 last, n = n % 10, n // 10

 print(last)
 if d == last:

 return None (Demo)

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

14

def square(x):

 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

Abstraction

Functional Abstractions

• Square takes one argument.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):

 return pow(x, 2)

def square(x):

 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still have the same behavior.

Yes

Yes

No

What does sum_squares need to know about square?

def square(x):

 return mul(x, x)

def sum_squares(x, y):

 return square(x) + square(y)

16

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

17

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:

 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))

if hypotenuse > 1:

 x = x + hypotenuse

discriminant = square(b) - 4 * a * c

x1 = (-b + sqrt(discriminant)) / (2 * a)

18

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Errors & Tracebacks

Taxonomy of Errors

Syntax Errors

20

(Demo)

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)  
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

