
Higher-Order Functions

Announcements

Example: Prime Factorization

Prime Factorization

4

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

4

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

4

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

858

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

858 = 2 * 429

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

858 = 2 * 429 = 2 * 3 * 143

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

... 
8 = 2 * 2 * 2 
9 = 3 * 3 
10 = 2 * 5 
11 = 11 
12 = 2 * 2 * 3 
...

One approach: Find the smallest prime factor of n, then divide by it

4

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13

(Demo)

Example: Iteration

The Fibonacci Sequence

6

The Fibonacci Sequence

6

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

1

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

1

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

2

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

3

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

4

fib

n

pred
curr

k

5

def fib(n):

 """Compute the nth Fibonacci number, for N >= 1."""

 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers

 k = 1 # curr is the kth Fibonacci number

 while k < n:

 pred, curr = curr, pred + curr

 k = k + 1

 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

6

The next Fibonacci number is the sum of
the current one and its predecessor

5

Go Bears!

Control

Boolean Contexts

10

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

George Boole

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

George Boole

11

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

George Boole

11

Two boolean contextsTwo boolean contexts

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None

George Boole

11

Two boolean contextsTwo boolean contexts

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None (more to come)

George Boole

11

Two boolean contextsTwo boolean contexts

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None

True values in Python: Anything else (True)

(more to come)

George Boole

11

Two boolean contextsTwo boolean contexts

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None

True values in Python: Anything else (True)

(more to come)

George Boole

11

Two boolean contextsTwo boolean contexts

(Demo)

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

if __________:

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Execution Rule for Conditional Statements:

if __________:

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

Execution Rule for Conditional Statements:

if __________:

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

Execution Rule for Conditional Statements:

if __________:

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

"else"
clause

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

"else"
clause

"if" header
expression

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

"else"
clause

"if" header
expression

"if" suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite "if" header
expression

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite "if" header
expression

"if"
suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite "if" header
expression

"if"
suite

"else"
suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

"if" header
expression

"if"
suite

"else"
suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):

 if c:

 return t

 else:

 return f

"if" header
expression

"if"
suite

"else"
suite

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):

 if c:

 return t

 else:

 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):

 if c:

 return t

 else:

 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):

 if c:

 return t

 else:

 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator  
to the arguments that are the
values of the operands

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

12

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),  
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):

 if c:

 return t

 else:

 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator  
to the arguments that are the
values of the operands

(Demo)

Short-Circuiting Expressions

Logical Operators

14

Logical Operators

To evaluate the expression <left> and <right>:

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

14

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

14

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

16

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

16

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

17

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

17

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

17

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

17

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

17

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

17

