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    return total

def identity(k):
    return k

def cube(k):
    return pow(k, 3)

def summation(n, term):
    """Sum the first n terms of a sequence.
    
    >>> summation(5, cube)
    225
    """
    total, k = 0, 1
    while k <= n:
        total, k = total + term(k), k + 1
    return total

def pi_term(k):
    return 8 / (k * 4 � 3) / (k * 4 � 1)

# Local function definitions; returning functions

def make_adder(n):
    """Return a function that takes one argument k and returns k + n.

    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    """Return a function that composes f and g.

    f, g �� functions of a single argument
    """
    def h(x):
        return f(g(x))
    return h

@main
def run():
    interact()
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Function of a single argument 
(not called "term")

A formal parameter that will 
be bound to a function

The function bound to term 
gets called here

The cube function is passed 
as an argument value

0 + 1 + 8 + 27 + 64 + 125
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