Higher-Order Functions Announcements

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

=2 %2 %2
9 =3x%3
10 =2 x5
11 = 11
Example: Prime Factorization 12=2%2%3

One approach: Find the smallest prime factor of n, then divide by it

858 =2 %429 =2 %3 % 143 =2 % 3 x 11 x 13

(Demo)

The Fibonacci Sequence

fib pred | < 3 5
curr [°8
nls
. k [B
Example: Iteration 2
def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # 0th and 1st Fibonacci numbers

k=1 # curr is the kth Fibonacci number
while k < n:
pred, curr =

> k=k+1
return curr [

The next Fibonacci number is the sum of
the current one and its predecessor

Go Bears!

Control

Boolean Contexts

def absolute_value(x):

"""Return the absolute value of x."""

if x < 0:
return -x
elif x == 0:
return 0
else:
return x

George Boole

Boolean Contexts

George Boole

def absolute_value(x):
"""Return the absolute value of x."""
return -x
elif (x 0+
return 0
else:
return x

Two boolean contexts }

False values in Python: False, @, '', None (more to come)

True values in Python: Anything else (True)

(Demo)

If Statements and Call Expressions

def if_(c, t, f):

Let's try to write a function that does the same thing as an if statement. if c:

"if" header
expression

e
}3 "else" suite

Execution Rule for Conditional Statements:

uyfn
clause

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header)

execute the suite & skip the remaining clauses.

(Demo)

return t
This function else:
doesn't exist return f

g fn
suite

"if" header

expression

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator
to the arguments that are the
values of the operands

Short-Circuiting Expressions

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.
To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

—15
I= 13428 430 443 45 =225
> S 8 8 8 8 8
=4+ —+—+ = 3.04

3735 "9 105 " 323

(Demo)

Summation Example

. % |Function of a single argument
: def cube(k): i (not called "term")]
i return pow(k, 3)

- (A formal parameter that will
def summation(n, {ter be bound to a function

"""Sum the first n terms of a sequence.

_.>>> summation(5,)
W The cube function is passed
total, k = 0, 1 as an argument value

while k <= n:

total, k = total +/
return total

The function bound to term
0+ 1+ 8+ 27 + 64 + 125] [gets called here }

