
print("1")
print("2")
print("3")
print("4")
.
.
.
print("10")

Count to 10 While Loop

while condition:
body

While Loop

while condition:
body

an expression that evaluates to True/False

While Loop

while condition:
body

one or more lines of code
(indented, just like a function body)

x = 5
x < 4 —> False

Conditional Operators

x = 5
x < 6 —> True

Conditional Operators

< less than
> greater than
== equal to
>= greater than or equal to
<= less than or equal to
!= not equal to

Conditional Operators

= != ==

x = 5

5 == x
True

5 = x
Error

Conditional Operators

Count to 10

while ???:
 print(n)
 ???

Count to 10

n = 1
while ???:
 print(n)
 ???

n = 1
while ???:
 print(n)
 n = n + 1

Count to 10

n = 1
while n <= 10:
 print(n)
 n = n + 1

Count to 10

n = 1
while n < 11:
 print(n)
 n = n + 1

Count to 10 Conditional Operators

from math import pi, sin

pi
3.14159265359

sin(pi)
1.22464679915e-16

sin(pi) == 0
False

Logical Operators

A and B:
True if A is True and B is True

A or B:
True if A is True or B is True

not A:
True if A is False
False if A is True

Logical Operators

not((3 < 4) and (10 < 12))

(10 > 12) or (5 != 6)

not(not(False == False))

“aardvark” < “zebra”

False

True

True

True

Logical Operators

not((3 < 4) and (10 < 12))

(10 > 12) or (5 != 6)

not(not(False == False))

“aardvark” < “zebra”

True > False

False

True

True

True

True

——— DRILL ———
write some code that generates the following

import drawSvg as draw

draw expanding circle
r = 0
R = 100
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while(r < R):
 anim.draw_frame(r)
 r = r + 1

——— DRILL ———
write some code that generates the following

draw expanding circle
r = 0
R = 100
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while(r < R):
 anim.draw_frame(r)
 r = r + 1

draw expanding circle
r = 0
R = 100
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while(r < R):
 anim.draw_frame(r)
 r = r + 1

if r == R then switch directions

temperature = 72  
 
if temperature <= 32:  
 print("It's freezing.")  

Conditionals

temperature = 72  
 
if temperature <= 32:  
 print("It's freezing.")  
else:  
 print("It’s not so cold.")  

Conditionals

Conditionals

temperature = 72
 
if temperature <= 32:  
 print("It's freezing.")  
elif temperature <= 50:  
 print("It's cool.")  
elif temperature <= 75:  
 print("It's warm.")  
else:  
 print("It's hot.")

Conditionals

x = 1
if x > 0:  
 print("positive")
 x = -1 * x  
elif x < 0:  
 print("negative")  
else:  
 print("zero")

print(x)

x = 1
if x > 0:  
 print("positive")
 x = -1 * x  
elif x < 0:  
 print("negative")  
else:  
 print("zero")

print(x)
positive
-1

Conditionals # ——— DRILL ———
write some code that generates the following

Draw expanding/contracting circle
r = 0 # current radius
R = 100 # maximum radius
sign = 1 # direction (1: expand; -1: contract)
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while ???:
 anim.draw_frame(r)
 if sign == 1:
 # expand circle
 else:
 # contract circle

 if circle is fully expanded or contracted:

reverse direction

Draw expanding/contracting circle
r = 0 # current radius
R = 100 # maximum radius
sign = 1 # direction (1: expand; -1: contract)
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while ???:
 anim.draw_frame(r)
 if sign == 1):
 r = r + 1
 else:
 r = r - 1

 if circle is fully expanded or contracted:

reverse direction

Draw expanding/contracting circle
r = 0 # current radius
R = 100 # maximum radius
sign = 1 # direction (1: expand; -1: contract)
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while(???):
 anim.draw_frame(r)
 if(sign == 1):
 r = r + 1
 else:
 r = r - 1

 if r > R or r < 0:
 sign = -1 * sign

Draw expanding/contracting circle
r = 0 # current radius
R = 100 # maximum radius
sign = 1 # direction (1: expand; -1: contract)
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while True:
 anim.draw_frame(r)
 if sign == 1:
 r = r + 1
 else:
 r = r - 1

 if r > R or r < 0:
 sign = -1 * sign

docs ~/ python3

>>> from math import sqrt
>>>
>>> def isPrime(n):
... i = 2
... while i <= int(sqrt(n)):
... if n % i == 0:
... return False
... i = i + 1
... return True
...
>>> isPrime(7)
True
>>> isPrime(9)
False
>>>

docs

 ~/ python3 isPrime.py
 ~/

docs

 ~/ python3 -i isPrime.py

>>> isPrime(7)
True
>>> isPrime(9)
False
>>>

docs
 ~/ python3 -m doctest -v isPrime.py
Trying:
 isPrime(9)
Expecting:
 False
ok
Trying:
 isPrime(7)
Expecting:
 True
ok
Trying:
 isPrime(797)
Expecting:
 True
ok
1 items had no tests:
 isPrime
1 items passed all tests:
 3 tests in isPrime.isPrime
3 tests in 2 items.
3 passed and 0 failed.
Test passed.

docs
 ~/ python3 -i isPrime.py
>>> print(isPrime.__doc__)
 isPrime is a function that takes
 as input an integer and returns
 True if it is prime and False
 otherwise
 >>> isPrime(9)
 False
 >>> isPrime(7)
 True
 >>> isPrime(797)
 True

default params
>>> isPrime()
True
>>> isPrime(9)
False
>>>

——— DRILL ———
write some code that prints all primes between 1 and N
that are palindromes (e.g., 1764671)

[pp.py]

